jimregan commited on
Commit
de8c10a
·
1 Parent(s): 8e0c67b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikiann
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: electra-base-irish-cased-discriminator-v1-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wikiann
20
+ type: wikiann
21
+ args: ga
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.5413922859830668
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.5161434977578475
29
+ - name: F1
30
+ type: f1
31
+ value: 0.5284664830119375
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.8419817960026273
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # electra-base-irish-cased-discriminator-v1-finetuned-ner
41
+
42
+ This model is a fine-tuned version of [DCU-NLP/electra-base-irish-cased-generator-v1](https://huggingface.co/DCU-NLP/electra-base-irish-cased-generator-v1) on the wikiann dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.6654
45
+ - Precision: 0.5414
46
+ - Recall: 0.5161
47
+ - F1: 0.5285
48
+ - Accuracy: 0.8420
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 16
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 5
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | No log | 1.0 | 63 | 1.3231 | 0.1046 | 0.0417 | 0.0596 | 0.5449 |
80
+ | No log | 2.0 | 126 | 0.9710 | 0.3879 | 0.3359 | 0.3600 | 0.7486 |
81
+ | No log | 3.0 | 189 | 0.7723 | 0.4713 | 0.4457 | 0.4582 | 0.8152 |
82
+ | No log | 4.0 | 252 | 0.6892 | 0.5257 | 0.4910 | 0.5078 | 0.8347 |
83
+ | No log | 5.0 | 315 | 0.6654 | 0.5414 | 0.5161 | 0.5285 | 0.8420 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.12.5
89
+ - Pytorch 1.10.0+cu111
90
+ - Datasets 1.16.1
91
+ - Tokenizers 0.10.3