fix
Browse files
README.md
CHANGED
@@ -40,7 +40,7 @@ processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-iris
|
|
40 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
|
41 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
42 |
# Preprocessing the datasets.
|
43 |
-
# We need to read the
|
44 |
def speech_file_to_array_fn(batch):
|
45 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
46 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
@@ -90,15 +90,15 @@ def remove_special_characters(batch):
|
|
90 |
return batch
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
# Preprocessing the datasets.
|
93 |
-
# We need to read the
|
94 |
def speech_file_to_array_fn(batch):
|
95 |
-
batch["sentence"] =
|
96 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
97 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
98 |
return batch
|
99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
# Preprocessing the datasets.
|
101 |
-
# We need to read the
|
102 |
def evaluate(batch):
|
103 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
with torch.no_grad():
|
|
|
40 |
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-irish-basic")
|
41 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
42 |
# Preprocessing the datasets.
|
43 |
+
# We need to read the audio files as arrays
|
44 |
def speech_file_to_array_fn(batch):
|
45 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
46 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
|
|
90 |
return batch
|
91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
92 |
# Preprocessing the datasets.
|
93 |
+
# We need to read the audio files as arrays
|
94 |
def speech_file_to_array_fn(batch):
|
95 |
+
batch["sentence"] = remove_special_characters(batch)
|
96 |
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
97 |
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
98 |
return batch
|
99 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
100 |
# Preprocessing the datasets.
|
101 |
+
# We need to read the audio files as arrays
|
102 |
def evaluate(batch):
|
103 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
with torch.no_grad():
|