Update README.md
Browse files
README.md
CHANGED
@@ -19,164 +19,155 @@ library_name: transformers
|
|
19 |
|
20 |
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-markdown-and-json) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing)
|
21 |
|
22 |
-
#
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
- **
|
29 |
-
- **
|
30 |
-
- **
|
31 |
-
- **
|
32 |
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
Feel free to test it with any website.
|
41 |
-
For HTML-to-markdown tasks, simply input the raw HTML without any prefix instructions.
|
42 |
-
However, JSON output and instruction-based extraction require specific prompt formatting as shown in the examples.
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
```
|
51 |
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
```python
|
58 |
-
#
|
59 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
-
import re
|
61 |
-
|
62 |
-
# (REMOVE <SCRIPT> to </script> and variations)
|
63 |
-
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>' # mach any char zero or more times
|
64 |
-
|
65 |
-
# (REMOVE HTML <STYLE> to </style> and variations)
|
66 |
-
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>' # mach any char zero or more times
|
67 |
-
|
68 |
-
# (REMOVE HTML <META> to </meta> and variations)
|
69 |
-
META_PATTERN = r'<[ ]*meta.*?>' # mach any char zero or more times
|
70 |
-
|
71 |
-
# (REMOVE HTML COMMENTS <!-- to --> and variations)
|
72 |
-
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>' # mach any char zero or more times
|
73 |
-
|
74 |
-
# (REMOVE HTML LINK <LINK> to </link> and variations)
|
75 |
-
LINK_PATTERN = r'<[ ]*link.*?>' # mach any char zero or more times
|
76 |
-
|
77 |
-
# (REPLACE base64 images)
|
78 |
-
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
|
79 |
-
|
80 |
-
# (REPLACE <svg> to </svg> and variations)
|
81 |
-
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'
|
82 |
-
|
83 |
-
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
|
84 |
-
return re.sub(
|
85 |
-
SVG_PATTERN,
|
86 |
-
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
|
87 |
-
html,
|
88 |
-
flags=re.DOTALL,
|
89 |
-
)
|
90 |
-
|
91 |
-
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
|
92 |
-
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
|
93 |
-
|
94 |
-
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
|
95 |
-
html = re.sub(SCRIPT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
96 |
-
html = re.sub(STYLE_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
97 |
-
html = re.sub(META_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
98 |
-
html = re.sub(COMMENT_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
99 |
-
html = re.sub(LINK_PATTERN, '', html, flags=(re.IGNORECASE | re.MULTILINE | re.DOTALL))
|
100 |
-
|
101 |
-
if clean_svg:
|
102 |
-
html = replace_svg(html)
|
103 |
-
|
104 |
-
if clean_base64:
|
105 |
-
html = replace_base64_images(html)
|
106 |
-
|
107 |
-
return html
|
108 |
-
|
109 |
-
|
110 |
-
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
111 |
-
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
|
112 |
-
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device)
|
113 |
-
|
114 |
-
def create_prompt(text: str, tokenizer = None, instruction: str = None, schema: str = None) -> str:
|
115 |
-
"""
|
116 |
-
Create a prompt for the model with optional instruction and JSON schema.
|
117 |
-
|
118 |
-
Args:
|
119 |
-
text (str): The input HTML text
|
120 |
-
tokenizer: The tokenizer to use
|
121 |
-
instruction (str, optional): Custom instruction for the model
|
122 |
-
schema (str, optional): JSON schema for structured extraction
|
123 |
-
|
124 |
-
Returns:
|
125 |
-
str: The formatted prompt
|
126 |
-
"""
|
127 |
-
|
128 |
-
if not instruction:
|
129 |
-
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
|
130 |
-
|
131 |
-
if schema:
|
132 |
-
instruction = 'Extract the specified information from a list of news threads and present it in a structured JSON format.'
|
133 |
-
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
|
134 |
-
else:
|
135 |
-
prompt = f"{instruction}\n```html\n{text}\n```"
|
136 |
-
|
137 |
-
messages = [
|
138 |
-
{
|
139 |
-
"role": "user",
|
140 |
-
"content": prompt,
|
141 |
-
}
|
142 |
-
]
|
143 |
-
|
144 |
-
return tokenizer.apply_chat_template(
|
145 |
-
messages, tokenize=False, add_generation_prompt=True
|
146 |
-
)
|
147 |
-
|
148 |
-
# example html content
|
149 |
html = "<html><body><h1>Hello, world!</h1></body></html>"
|
150 |
|
151 |
-
# clean the html content, remove scripts, styles, comments, etc.
|
152 |
html = clean_html(html)
|
153 |
|
154 |
input_prompt = create_prompt(html)
|
155 |
-
|
156 |
-
print(input_prompt)
|
157 |
-
|
158 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
159 |
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
160 |
|
161 |
print(tokenizer.decode(outputs[0]))
|
162 |
```
|
163 |
|
164 |
-
|
165 |
-
For example, if you want to extract the menu items from the HTML content, you can create a prompt like this:
|
166 |
|
167 |
```python
|
168 |
instruction = "Extract the menu items from the given HTML and convert it to Markdown format."
|
169 |
input_prompt = create_prompt(html, instruction=instruction)
|
170 |
-
|
171 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
172 |
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
173 |
|
174 |
print(tokenizer.decode(outputs[0]))
|
175 |
```
|
176 |
|
177 |
-
### HTML to JSON
|
178 |
-
|
179 |
-
To extract structured information from HTML content and convert it to JSON, you can create a prompt with a JSON schema.
|
180 |
|
181 |
```python
|
182 |
schema = """
|
@@ -200,6 +191,7 @@ schema = """
|
|
200 |
}
|
201 |
"""
|
202 |
|
|
|
203 |
input_prompt = create_prompt(html, schema=schema)
|
204 |
|
205 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
@@ -208,7 +200,6 @@ outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=F
|
|
208 |
print(tokenizer.decode(outputs[0]))
|
209 |
```
|
210 |
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
TBD
|
|
|
19 |
|
20 |
[Blog](https://jina.ai/news/readerlm-v2-frontier-small-language-model-for-markdown-and-json) | [Colab](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing)
|
21 |
|
22 |
+
# ReaderLM-v2
|
23 |
|
24 |
+
`ReaderLM-v2` is the second generation of Jina ReaderLM, a **1.5B** parameter language model that converts raw HTML into beautifully formatted markdown or JSON with superior accuracy and improved longer context handling.
|
25 |
+
It supports multiple languages (29 in total) and is specialized for tasks involving HTML parsing, transformation, and text extraction.
|
26 |
|
27 |
+
## Model Overview
|
28 |
|
29 |
+
- **Model Type**: Autoregressive, decoder-only transformer
|
30 |
+
- **Parameter Count**: ~1.5B
|
31 |
+
- **Context Window**: Up to 512K tokens (combined input and output)
|
32 |
+
- **Supported Languages**: English, Chinese, Japanese, Korean, French, Spanish, Portuguese, German, Italian, Russian, Vietnamese, Thai, Arabic, and more (29 total)
|
33 |
|
34 |
+
## What's New in `ReaderLM-v2`
|
35 |
|
36 |
+
`ReaderLM-v2` features several significant improvements over its predecessor:
|
37 |
|
38 |
+
- **Better Markdown Generation**: Generates cleaner, more readable Markdown output.
|
39 |
+
- **JSON Output**: Can produce JSON-formatted text, enabling structured extraction for further downstream processing.
|
40 |
+
- **Longer Context Handling**: Can handle up to 512K tokens, which is beneficial for large HTML documents or combined transformations.
|
41 |
+
- **Multilingual Support**: Covers 29 languages for broader application across international web data.
|
|
|
|
|
|
|
42 |
|
43 |
+
---
|
44 |
|
45 |
+
# Usage
|
46 |
|
47 |
+
Below, you will find instructions and examples for using `ReaderLM-v2` locally using the Hugging Face Transformers library.
|
48 |
+
For a more hands-on experience in a hosted environment, see the [Google Colab Notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing).
|
|
|
49 |
|
50 |
+
## On Google Colab
|
51 |
|
52 |
+
The easiest way to experience `ReaderLM-v2` is by running our [Colab notebook](https://colab.research.google.com/drive/1FfPjZwkMSocOLsEYH45B3B4NxDryKLGI?usp=sharing),
|
53 |
+
The notebook runs on a free T4 GPU tier and uses vLLM and Triton for faster inference. You can feed any website’s HTML directly into the model.
|
54 |
+
|
55 |
+
• For simple HTML-to-Markdown tasks, you only need to provide the raw HTML (no special instructions).
|
56 |
+
• For JSON output and instruction-based extraction, use the prompt formatting guidelines in the notebook.
|
57 |
+
|
58 |
+
## Local Usage
|
59 |
+
|
60 |
+
To use `ReaderLM-v2` locally:
|
61 |
+
|
62 |
+
1. Install the necessary dependencies:
|
63 |
+
|
64 |
+
```bash
|
65 |
+
pip install transformers
|
66 |
+
```
|
67 |
+
|
68 |
+
2. Load and run the model:
|
69 |
+
|
70 |
+
```python
|
71 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
72 |
+
import re
|
73 |
+
|
74 |
+
device = "cuda" # or "cpu"
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
|
76 |
+
model = AutoModelForCausalLM.from_pretrained("jinaai/ReaderLM-v2").to(device)
|
77 |
+
```
|
78 |
+
|
79 |
+
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input a bit (i.e. make it more friendly for GPU VRAM):
|
80 |
+
|
81 |
+
```python
|
82 |
+
# Patterns
|
83 |
+
SCRIPT_PATTERN = r'<[ ]*script.*?\/[ ]*script[ ]*>'
|
84 |
+
STYLE_PATTERN = r'<[ ]*style.*?\/[ ]*style[ ]*>'
|
85 |
+
META_PATTERN = r'<[ ]*meta.*?>'
|
86 |
+
COMMENT_PATTERN = r'<[ ]*!--.*?--[ ]*>'
|
87 |
+
LINK_PATTERN = r'<[ ]*link.*?>'
|
88 |
+
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
|
89 |
+
SVG_PATTERN = r'(<svg[^>]*>)(.*?)(<\/svg>)'
|
90 |
+
|
91 |
+
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
|
92 |
+
return re.sub(
|
93 |
+
SVG_PATTERN,
|
94 |
+
lambda match: f"{match.group(1)}{new_content}{match.group(3)}",
|
95 |
+
html,
|
96 |
+
flags=re.DOTALL,
|
97 |
+
)
|
98 |
+
|
99 |
+
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
|
100 |
+
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
|
101 |
+
|
102 |
+
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
|
103 |
+
html = re.sub(SCRIPT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
|
104 |
+
html = re.sub(STYLE_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
|
105 |
+
html = re.sub(META_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
|
106 |
+
html = re.sub(COMMENT_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
|
107 |
+
html = re.sub(LINK_PATTERN, '', html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL)
|
108 |
+
|
109 |
+
if clean_svg:
|
110 |
+
html = replace_svg(html)
|
111 |
+
if clean_base64:
|
112 |
+
html = replace_base64_images(html)
|
113 |
+
return html
|
114 |
+
```
|
115 |
+
|
116 |
+
4. Create a prompt for the model:
|
117 |
+
|
118 |
+
```python
|
119 |
+
def create_prompt(text: str, tokenizer=None, instruction: str = None, schema: str = None) -> str:
|
120 |
+
"""
|
121 |
+
Create a prompt for the model with optional instruction and JSON schema.
|
122 |
+
"""
|
123 |
+
if not instruction:
|
124 |
+
instruction = "Extract the main content from the given HTML and convert it to Markdown format."
|
125 |
+
if schema:
|
126 |
+
# This is an example instruction for JSON output
|
127 |
+
instruction = "Extract the specified information from a list of news threads and present it in a structured JSON format."
|
128 |
+
prompt = f"{instruction}\n```html\n{text}\n```\nThe JSON schema is as follows:```json{schema}```"
|
129 |
+
else:
|
130 |
+
prompt = f"{instruction}\n```html\n{text}\n```"
|
131 |
+
|
132 |
+
messages = [
|
133 |
+
{
|
134 |
+
"role": "user",
|
135 |
+
"content": prompt,
|
136 |
+
}
|
137 |
+
]
|
138 |
+
|
139 |
+
return tokenizer.apply_chat_template(
|
140 |
+
messages, tokenize=False, add_generation_prompt=True
|
141 |
+
)
|
142 |
+
```
|
143 |
+
|
144 |
+
### HTML to Markdown Example
|
145 |
|
146 |
```python
|
147 |
+
# Example HTML
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
html = "<html><body><h1>Hello, world!</h1></body></html>"
|
149 |
|
|
|
150 |
html = clean_html(html)
|
151 |
|
152 |
input_prompt = create_prompt(html)
|
|
|
|
|
|
|
153 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
154 |
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
155 |
|
156 |
print(tokenizer.decode(outputs[0]))
|
157 |
```
|
158 |
|
159 |
+
### Instruction-Focused Extraction
|
|
|
160 |
|
161 |
```python
|
162 |
instruction = "Extract the menu items from the given HTML and convert it to Markdown format."
|
163 |
input_prompt = create_prompt(html, instruction=instruction)
|
|
|
164 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
165 |
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
166 |
|
167 |
print(tokenizer.decode(outputs[0]))
|
168 |
```
|
169 |
|
170 |
+
### HTML to JSON Example
|
|
|
|
|
171 |
|
172 |
```python
|
173 |
schema = """
|
|
|
191 |
}
|
192 |
"""
|
193 |
|
194 |
+
html = clean_html(html)
|
195 |
input_prompt = create_prompt(html, schema=schema)
|
196 |
|
197 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
|
|
200 |
print(tokenizer.decode(outputs[0]))
|
201 |
```
|
202 |
|
203 |
+
## AWS Sagemaker & Azure Marketplace & Google Cloud Platform
|
204 |
|
205 |
+
Coming soon.
|
|
|
|