feat: reformat codes using black
Browse files
README.md
CHANGED
@@ -83,7 +83,6 @@ To use `ReaderLM-v2` locally:
|
|
83 |
|
84 |
```python
|
85 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
86 |
-
import re
|
87 |
|
88 |
device = "cuda" # or "cpu"
|
89 |
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
|
@@ -93,14 +92,17 @@ To use `ReaderLM-v2` locally:
|
|
93 |
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input:
|
94 |
|
95 |
```python
|
|
|
|
|
96 |
# Patterns
|
97 |
-
SCRIPT_PATTERN = r
|
98 |
-
STYLE_PATTERN = r
|
99 |
-
META_PATTERN = r
|
100 |
-
COMMENT_PATTERN = r
|
101 |
-
LINK_PATTERN = r
|
102 |
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
|
103 |
-
SVG_PATTERN = r
|
|
|
104 |
|
105 |
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
|
106 |
return re.sub(
|
@@ -110,15 +112,27 @@ To use `ReaderLM-v2` locally:
|
|
110 |
flags=re.DOTALL,
|
111 |
)
|
112 |
|
|
|
113 |
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
|
114 |
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
|
115 |
|
|
|
116 |
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
|
117 |
-
html = re.sub(
|
118 |
-
|
119 |
-
|
120 |
-
html = re.sub(
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
if clean_svg:
|
124 |
html = replace_svg(html)
|
@@ -130,7 +144,9 @@ To use `ReaderLM-v2` locally:
|
|
130 |
4. Create a prompt for the model:
|
131 |
|
132 |
```python
|
133 |
-
def create_prompt(
|
|
|
|
|
134 |
"""
|
135 |
Create a prompt for the model with optional instruction and JSON schema.
|
136 |
"""
|
@@ -157,14 +173,15 @@ To use `ReaderLM-v2` locally:
|
|
157 |
### HTML to Markdown Example
|
158 |
|
159 |
```python
|
160 |
-
# Example HTML
|
161 |
html = "<html><body><h1>Hello, world!</h1></body></html>"
|
162 |
|
163 |
html = clean_html(html)
|
164 |
|
165 |
input_prompt = create_prompt(html)
|
166 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
167 |
-
outputs = model.generate(
|
|
|
|
|
168 |
|
169 |
print(tokenizer.decode(outputs[0]))
|
170 |
```
|
@@ -197,7 +214,9 @@ html = clean_html(html)
|
|
197 |
input_prompt = create_prompt(html, schema=schema)
|
198 |
|
199 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
200 |
-
outputs = model.generate(
|
|
|
|
|
201 |
|
202 |
print(tokenizer.decode(outputs[0]))
|
203 |
```
|
|
|
83 |
|
84 |
```python
|
85 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
86 |
|
87 |
device = "cuda" # or "cpu"
|
88 |
tokenizer = AutoTokenizer.from_pretrained("jinaai/ReaderLM-v2")
|
|
|
92 |
3. (Optional) Pre-clean your HTML to remove scripts, styles, comments, to reduce the noise and length of the input:
|
93 |
|
94 |
```python
|
95 |
+
import re
|
96 |
+
|
97 |
# Patterns
|
98 |
+
SCRIPT_PATTERN = r"<[ ]*script.*?\/[ ]*script[ ]*>"
|
99 |
+
STYLE_PATTERN = r"<[ ]*style.*?\/[ ]*style[ ]*>"
|
100 |
+
META_PATTERN = r"<[ ]*meta.*?>"
|
101 |
+
COMMENT_PATTERN = r"<[ ]*!--.*?--[ ]*>"
|
102 |
+
LINK_PATTERN = r"<[ ]*link.*?>"
|
103 |
BASE64_IMG_PATTERN = r'<img[^>]+src="data:image/[^;]+;base64,[^"]+"[^>]*>'
|
104 |
+
SVG_PATTERN = r"(<svg[^>]*>)(.*?)(<\/svg>)"
|
105 |
+
|
106 |
|
107 |
def replace_svg(html: str, new_content: str = "this is a placeholder") -> str:
|
108 |
return re.sub(
|
|
|
112 |
flags=re.DOTALL,
|
113 |
)
|
114 |
|
115 |
+
|
116 |
def replace_base64_images(html: str, new_image_src: str = "#") -> str:
|
117 |
return re.sub(BASE64_IMG_PATTERN, f'<img src="{new_image_src}"/>', html)
|
118 |
|
119 |
+
|
120 |
def clean_html(html: str, clean_svg: bool = False, clean_base64: bool = False):
|
121 |
+
html = re.sub(
|
122 |
+
SCRIPT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
|
123 |
+
)
|
124 |
+
html = re.sub(
|
125 |
+
STYLE_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
|
126 |
+
)
|
127 |
+
html = re.sub(
|
128 |
+
META_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
|
129 |
+
)
|
130 |
+
html = re.sub(
|
131 |
+
COMMENT_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
|
132 |
+
)
|
133 |
+
html = re.sub(
|
134 |
+
LINK_PATTERN, "", html, flags=re.IGNORECASE | re.MULTILINE | re.DOTALL
|
135 |
+
)
|
136 |
|
137 |
if clean_svg:
|
138 |
html = replace_svg(html)
|
|
|
144 |
4. Create a prompt for the model:
|
145 |
|
146 |
```python
|
147 |
+
def create_prompt(
|
148 |
+
text: str, tokenizer=None, instruction: str = None, schema: str = None
|
149 |
+
) -> str:
|
150 |
"""
|
151 |
Create a prompt for the model with optional instruction and JSON schema.
|
152 |
"""
|
|
|
173 |
### HTML to Markdown Example
|
174 |
|
175 |
```python
|
|
|
176 |
html = "<html><body><h1>Hello, world!</h1></body></html>"
|
177 |
|
178 |
html = clean_html(html)
|
179 |
|
180 |
input_prompt = create_prompt(html)
|
181 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
182 |
+
outputs = model.generate(
|
183 |
+
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
|
184 |
+
)
|
185 |
|
186 |
print(tokenizer.decode(outputs[0]))
|
187 |
```
|
|
|
214 |
input_prompt = create_prompt(html, schema=schema)
|
215 |
|
216 |
inputs = tokenizer.encode(input_prompt, return_tensors="pt").to(device)
|
217 |
+
outputs = model.generate(
|
218 |
+
inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08
|
219 |
+
)
|
220 |
|
221 |
print(tokenizer.decode(outputs[0]))
|
222 |
```
|