File size: 9,249 Bytes
b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 af015b7 b8b8f72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
library_name: transformers
license: cc-by-nc-4.0
tags:
- xlm-roberta
- eva02
- clip
- feature-extraction
- sentence-similarity
- retrieval
- multimodal
- multi-modal
- crossmodal
- cross-modal
- mteb
- clip-benchmark
- vidore
- transformers
- sentence-transformers
- onnx
- safetensors
- transformers.js
language:
- multilingual
- ar
- bn
- da
- de
- el
- en
- es
- fi
- fr
- hi
- id
- it
- ja
- ka
- ko
- lv
- nl
- no
- pl
- pt
- ro
- ru
- sk
- sv
- th
- tr
- uk
- ur
- vi
- zh
inference: false
---
<br><br>
<p align="center">
<img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
</p>
<p align="center">
<b>The embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
</p>
<p align="center">
<b>Jina CLIP: your CLIP model is also your text retriever!</b>
</p>
## Intended Usage & Model Info
`jina-clip-v2` is a state-of-the-art **multilingual and multimodal (text-image) embedding model**.
`jina-clip-v2` is a successor to the [`jina-clip-v1`](https://huggingface.co/jinaai/jina-clip-v1) model and brings new features and capabilities, such as:
* *support for multiple languages* - the text tower now supports 30 languages, including `en`, `zh`, `de`, `ar`, `hi`, `es`
* *embedding truncation on both image and text vectors* - both towers are trained using [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which enables slicing the output vectors and in as a result computation and storage costs as well
* *visual document retrieval performance boost* - with an image resolution of 384 (compared to 224 on `jina-clip-v1`) the image tower can now capture finer visual details. This feature along with a more diverse training set enable the model to perform much better on visual document retrieval tasks, as is evident by the performance gains on the [ViDoRe Benchmark](https://huggingface.co/spaces/vidore/vidore-leaderboard), compared to `jina-clip-v1`
Similar to our predecessor model, `jina-clip-v2` bridges the gap between text-to-text and cross-modal retrieval. Via a single vector space, `jina-clip-v2` offers state-of-the-art performance on both tasks.
This dual capability makes it an excellent tool for multimodal retrieval-augmented generation (MuRAG) applications, enabling seamless text-to-text and text-to-image searches within a single model.
## Data & Parameters
[Check out our paper](https://arxiv.org/abs/2405.20204). Updated technical report for v2 coming soon!
## Usage
1. The easiest way to start using jina-clip-v2 is via Jina AI's [Embeddings API](https://jina.ai/embeddings/).
2. Alternatively, you can use the model directly via the transformers/sentence-transformers package.
```python
# !pip install transformers einops timm pillow
from transformers import AutoModel
# Initialize the model
model = AutoModel.from_pretrained('jinaai/jina-clip-v2', trust_remote_code=True)
# Sentences
sentences = ['A blue cat', 'A red cat']
# Public image URLs
image_urls = [
'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
]
# Choose a matryoshka dimension, set to None to get the full 1024-dim vectors
truncate_dim = 512
# Encode text and images
text_embeddings = model.encode_text(sentences, truncate_dim=truncate_dim)
image_embeddings = model.encode_image(image_urls, truncate_dim=truncate_dim) # also accepts PIL.image, local filenames, dataURI
# Compute similarities
print(text_embeddings[0] @ text_embeddings[1].T) # text embedding similarity
print(text_embeddings[0] @ image_embeddings[0].T) # text-image cross-modal similarity
print(text_embeddings[0] @ image_embeddings[1].T) # text-image cross-modal similarity
print(text_embeddings[1] @ image_embeddings[0].T) # text-image cross-modal similarity
print(text_embeddings[1] @ image_embeddings[1].T)# text-image cross-modal similarity
```
or via sentence-transformers:
```python
# !pip install sentence-transformers
from sentence_transformers import SentenceTransformer
# Initialize the model
model = SentenceTransformer('jinaai/jina-clip-v2', trust_remote_code=True)
# Sentences
sentences = ['A blue cat', 'A red cat']
# Public image URLs
image_urls = [
'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
]
text_embeddings = model.encode(sentences)
image_embeddings = model.encode(image_urls)
```
JavaScript developers can use Jina CLIP via the [transformers.js](https://huggingface.co/docs/transformers.js) library. Note that to use this model, you need to install transformers.js [v3](https://github.com/xenova/transformers.js/tree/v3) from source using `npm install xenova/transformers.js#v3`.
```js
import { AutoTokenizer, CLIPTextModelWithProjection, AutoProcessor, CLIPVisionModelWithProjection, RawImage, cos_sim } from '@xenova/transformers';
// Load tokenizer and text model
const tokenizer = await AutoTokenizer.from_pretrained('jinaai/jina-clip-v2');
const text_model = await CLIPTextModelWithProjection.from_pretrained('jinaai/jina-clip-v2');
// Load processor and vision model
const processor = await AutoProcessor.from_pretrained('Xenova/clip-vit-base-patch32');
const vision_model = await CLIPVisionModelWithProjection.from_pretrained('jinaai/jina-clip-v2');
// Run tokenization
const texts = ['A blue cat', 'A red cat'];
const text_inputs = tokenizer(texts, { padding: true, truncation: true });
// Compute text embeddings
const { text_embeds } = await text_model(text_inputs);
// Read images and run processor
const urls = [
'https://i.pinimg.com/600x315/21/48/7e/21487e8e0970dd366dafaed6ab25d8d8.jpg',
'https://i.pinimg.com/736x/c9/f2/3e/c9f23e212529f13f19bad5602d84b78b.jpg'
];
const image = await Promise.all(urls.map(url => RawImage.read(url)));
const image_inputs = await processor(image);
// Compute vision embeddings
const { image_embeds } = await vision_model(image_inputs);
// Compute similarities
console.log(cos_sim(text_embeds[0].data, text_embeds[1].data)) // text embedding similarity
console.log(cos_sim(text_embeds[0].data, image_embeds[0].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[0].data, image_embeds[1].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[1].data, image_embeds[0].data)) // text-image cross-modal similarity
console.log(cos_sim(text_embeds[1].data, image_embeds[1].data)) // text-image cross-modal similarity
```
## Performance
### Text-Image Retrieval
Coming soon!
### Text-Text Retrieval
Coming soon!
## Contact
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
## Citation
If you find `jina-clip-v2` useful in your research, please cite the following paper:
```bibtex
@misc{2405.20204,
Author = {Andreas Koukounas and Georgios Mastrapas and Michael Günther and Bo Wang and Scott Martens and Isabelle Mohr and Saba Sturua and Mohammad Kalim Akram and Joan Fontanals Martínez and Saahil Ognawala and Susana Guzman and Maximilian Werk and Nan Wang and Han Xiao},
Title = {Jina CLIP: Your CLIP Model Is Also Your Text Retriever},
Year = {2024},
Eprint = {arXiv:2405.20204},
}
```
## FAQ
### I encounter this problem, what should I do?
```
ValueError: The model class you are passing has a `config_class` attribute that is not consistent with the config class you passed (model has <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_clip.JinaCLIPConfig'> and you passed <class 'transformers_modules.jinaai.jina-clip-implementation.7f069e2d54d609ef1ad2eb578c7bf07b5a51de41.configuration_cli.JinaCLIPConfig'>. Fix one of those so they match!
```
There was a bug in Transformers library between 4.40.x to 4.41.1. You can update transformers to >4.41.2 or <=4.40.0
### Given one query, how can I merge its text-text and text-image cosine similarity?
Our emperical study shows that text-text cosine similarity is normally larger than text-image cosine similarity!
If you want to merge two scores, we recommended 2 ways:
1. weighted average of text-text sim and text-image sim:
```python
combined_scores = sim(text, text) + lambda * sim(text, image) # optimal lambda depends on your dataset, but in general lambda=2 can be a good choice.
```
2. apply z-score normalization before merging scores:
```python
# pseudo code
query_document_mean = np.mean(cos_sim_text_texts)
query_document_std = np.std(cos_sim_text_texts)
text_image_mean = np.mean(cos_sim_text_images)
text_image_std = np.std(cos_sim_text_images)
query_document_sim_normalized = (cos_sim_query_documents - query_document_mean) / query_document_std
text_image_sim_normalized = (cos_sim_text_images - text_image_mean) / text_image_std
```
|