Qi Liu
commited on
Commit
·
ae13eea
1
Parent(s):
4dd8502
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,1110 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- finetuner
|
4 |
+
- mteb
|
5 |
+
- sentence-transformers
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- alibi
|
9 |
license: apache-2.0
|
10 |
+
language:
|
11 |
+
- en
|
12 |
+
- zh
|
13 |
+
model-index:
|
14 |
+
- name: jina-embeddings-v2-base-zh
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: STS
|
18 |
+
dataset:
|
19 |
+
type: C-MTEB/AFQMC
|
20 |
+
name: MTEB AFQMC
|
21 |
+
config: default
|
22 |
+
split: validation
|
23 |
+
revision: None
|
24 |
+
metrics:
|
25 |
+
- type: cos_sim_pearson
|
26 |
+
value: 48.51403119231363
|
27 |
+
- type: cos_sim_spearman
|
28 |
+
value: 50.5928547846445
|
29 |
+
- type: euclidean_pearson
|
30 |
+
value: 48.750436310559074
|
31 |
+
- type: euclidean_spearman
|
32 |
+
value: 50.50950238691385
|
33 |
+
- type: manhattan_pearson
|
34 |
+
value: 48.7866189440328
|
35 |
+
- type: manhattan_spearman
|
36 |
+
value: 50.58692402017165
|
37 |
+
- task:
|
38 |
+
type: STS
|
39 |
+
dataset:
|
40 |
+
type: C-MTEB/ATEC
|
41 |
+
name: MTEB ATEC
|
42 |
+
config: default
|
43 |
+
split: test
|
44 |
+
revision: None
|
45 |
+
metrics:
|
46 |
+
- type: cos_sim_pearson
|
47 |
+
value: 50.25985700105725
|
48 |
+
- type: cos_sim_spearman
|
49 |
+
value: 51.28815934593989
|
50 |
+
- type: euclidean_pearson
|
51 |
+
value: 52.70329248799904
|
52 |
+
- type: euclidean_spearman
|
53 |
+
value: 50.94101139559258
|
54 |
+
- type: manhattan_pearson
|
55 |
+
value: 52.6647237400892
|
56 |
+
- type: manhattan_spearman
|
57 |
+
value: 50.922441325406176
|
58 |
+
- task:
|
59 |
+
type: Classification
|
60 |
+
dataset:
|
61 |
+
type: mteb/amazon_reviews_multi
|
62 |
+
name: MTEB AmazonReviewsClassification (zh)
|
63 |
+
config: zh
|
64 |
+
split: test
|
65 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
66 |
+
metrics:
|
67 |
+
- type: accuracy
|
68 |
+
value: 34.944
|
69 |
+
- type: f1
|
70 |
+
value: 34.06478860660109
|
71 |
+
- task:
|
72 |
+
type: STS
|
73 |
+
dataset:
|
74 |
+
type: C-MTEB/BQ
|
75 |
+
name: MTEB BQ
|
76 |
+
config: default
|
77 |
+
split: test
|
78 |
+
revision: None
|
79 |
+
metrics:
|
80 |
+
- type: cos_sim_pearson
|
81 |
+
value: 65.15667035488342
|
82 |
+
- type: cos_sim_spearman
|
83 |
+
value: 66.07110142081
|
84 |
+
- type: euclidean_pearson
|
85 |
+
value: 60.447598102249714
|
86 |
+
- type: euclidean_spearman
|
87 |
+
value: 61.826575796578766
|
88 |
+
- type: manhattan_pearson
|
89 |
+
value: 60.39364279354984
|
90 |
+
- type: manhattan_spearman
|
91 |
+
value: 61.78743491223281
|
92 |
+
- task:
|
93 |
+
type: Clustering
|
94 |
+
dataset:
|
95 |
+
type: C-MTEB/CLSClusteringP2P
|
96 |
+
name: MTEB CLSClusteringP2P
|
97 |
+
config: default
|
98 |
+
split: test
|
99 |
+
revision: None
|
100 |
+
metrics:
|
101 |
+
- type: v_measure
|
102 |
+
value: 39.96714175391701
|
103 |
+
- task:
|
104 |
+
type: Clustering
|
105 |
+
dataset:
|
106 |
+
type: C-MTEB/CLSClusteringS2S
|
107 |
+
name: MTEB CLSClusteringS2S
|
108 |
+
config: default
|
109 |
+
split: test
|
110 |
+
revision: None
|
111 |
+
metrics:
|
112 |
+
- type: v_measure
|
113 |
+
value: 38.39863566717934
|
114 |
+
- task:
|
115 |
+
type: Reranking
|
116 |
+
dataset:
|
117 |
+
type: C-MTEB/CMedQAv1-reranking
|
118 |
+
name: MTEB CMedQAv1
|
119 |
+
config: default
|
120 |
+
split: test
|
121 |
+
revision: None
|
122 |
+
metrics:
|
123 |
+
- type: map
|
124 |
+
value: 83.63680381780644
|
125 |
+
- type: mrr
|
126 |
+
value: 86.16476190476192
|
127 |
+
- task:
|
128 |
+
type: Reranking
|
129 |
+
dataset:
|
130 |
+
type: C-MTEB/CMedQAv2-reranking
|
131 |
+
name: MTEB CMedQAv2
|
132 |
+
config: default
|
133 |
+
split: test
|
134 |
+
revision: None
|
135 |
+
metrics:
|
136 |
+
- type: map
|
137 |
+
value: 83.74350667859487
|
138 |
+
- type: mrr
|
139 |
+
value: 86.10388888888889
|
140 |
+
- task:
|
141 |
+
type: Retrieval
|
142 |
+
dataset:
|
143 |
+
type: C-MTEB/CmedqaRetrieval
|
144 |
+
name: MTEB CmedqaRetrieval
|
145 |
+
config: default
|
146 |
+
split: dev
|
147 |
+
revision: None
|
148 |
+
metrics:
|
149 |
+
- type: map_at_1
|
150 |
+
value: 22.072
|
151 |
+
- type: map_at_10
|
152 |
+
value: 32.942
|
153 |
+
- type: map_at_100
|
154 |
+
value: 34.768
|
155 |
+
- type: map_at_1000
|
156 |
+
value: 34.902
|
157 |
+
- type: map_at_3
|
158 |
+
value: 29.357
|
159 |
+
- type: map_at_5
|
160 |
+
value: 31.236000000000004
|
161 |
+
- type: mrr_at_1
|
162 |
+
value: 34.259
|
163 |
+
- type: mrr_at_10
|
164 |
+
value: 41.957
|
165 |
+
- type: mrr_at_100
|
166 |
+
value: 42.982
|
167 |
+
- type: mrr_at_1000
|
168 |
+
value: 43.042
|
169 |
+
- type: mrr_at_3
|
170 |
+
value: 39.722
|
171 |
+
- type: mrr_at_5
|
172 |
+
value: 40.898
|
173 |
+
- type: ndcg_at_1
|
174 |
+
value: 34.259
|
175 |
+
- type: ndcg_at_10
|
176 |
+
value: 39.153
|
177 |
+
- type: ndcg_at_100
|
178 |
+
value: 46.493
|
179 |
+
- type: ndcg_at_1000
|
180 |
+
value: 49.01
|
181 |
+
- type: ndcg_at_3
|
182 |
+
value: 34.636
|
183 |
+
- type: ndcg_at_5
|
184 |
+
value: 36.278
|
185 |
+
- type: precision_at_1
|
186 |
+
value: 34.259
|
187 |
+
- type: precision_at_10
|
188 |
+
value: 8.815000000000001
|
189 |
+
- type: precision_at_100
|
190 |
+
value: 1.474
|
191 |
+
- type: precision_at_1000
|
192 |
+
value: 0.179
|
193 |
+
- type: precision_at_3
|
194 |
+
value: 19.73
|
195 |
+
- type: precision_at_5
|
196 |
+
value: 14.174000000000001
|
197 |
+
- type: recall_at_1
|
198 |
+
value: 22.072
|
199 |
+
- type: recall_at_10
|
200 |
+
value: 48.484
|
201 |
+
- type: recall_at_100
|
202 |
+
value: 79.035
|
203 |
+
- type: recall_at_1000
|
204 |
+
value: 96.15
|
205 |
+
- type: recall_at_3
|
206 |
+
value: 34.607
|
207 |
+
- type: recall_at_5
|
208 |
+
value: 40.064
|
209 |
+
- task:
|
210 |
+
type: PairClassification
|
211 |
+
dataset:
|
212 |
+
type: C-MTEB/CMNLI
|
213 |
+
name: MTEB Cmnli
|
214 |
+
config: default
|
215 |
+
split: validation
|
216 |
+
revision: None
|
217 |
+
metrics:
|
218 |
+
- type: cos_sim_accuracy
|
219 |
+
value: 76.7047504509922
|
220 |
+
- type: cos_sim_ap
|
221 |
+
value: 85.26649874800871
|
222 |
+
- type: cos_sim_f1
|
223 |
+
value: 78.13528724646915
|
224 |
+
- type: cos_sim_precision
|
225 |
+
value: 71.57587548638132
|
226 |
+
- type: cos_sim_recall
|
227 |
+
value: 86.01823708206688
|
228 |
+
- type: dot_accuracy
|
229 |
+
value: 70.13830426939266
|
230 |
+
- type: dot_ap
|
231 |
+
value: 77.01510412382171
|
232 |
+
- type: dot_f1
|
233 |
+
value: 73.56710042713817
|
234 |
+
- type: dot_precision
|
235 |
+
value: 63.955094991364426
|
236 |
+
- type: dot_recall
|
237 |
+
value: 86.57937806873977
|
238 |
+
- type: euclidean_accuracy
|
239 |
+
value: 75.53818400481059
|
240 |
+
- type: euclidean_ap
|
241 |
+
value: 84.34668448241264
|
242 |
+
- type: euclidean_f1
|
243 |
+
value: 77.51741608613047
|
244 |
+
- type: euclidean_precision
|
245 |
+
value: 70.65614777756399
|
246 |
+
- type: euclidean_recall
|
247 |
+
value: 85.85457096095394
|
248 |
+
- type: manhattan_accuracy
|
249 |
+
value: 75.49007817197835
|
250 |
+
- type: manhattan_ap
|
251 |
+
value: 84.40297506704299
|
252 |
+
- type: manhattan_f1
|
253 |
+
value: 77.63185324160932
|
254 |
+
- type: manhattan_precision
|
255 |
+
value: 70.03949595636637
|
256 |
+
- type: manhattan_recall
|
257 |
+
value: 87.07037643207856
|
258 |
+
- type: max_accuracy
|
259 |
+
value: 76.7047504509922
|
260 |
+
- type: max_ap
|
261 |
+
value: 85.26649874800871
|
262 |
+
- type: max_f1
|
263 |
+
value: 78.13528724646915
|
264 |
+
- task:
|
265 |
+
type: Retrieval
|
266 |
+
dataset:
|
267 |
+
type: C-MTEB/CovidRetrieval
|
268 |
+
name: MTEB CovidRetrieval
|
269 |
+
config: default
|
270 |
+
split: dev
|
271 |
+
revision: None
|
272 |
+
metrics:
|
273 |
+
- type: map_at_1
|
274 |
+
value: 69.178
|
275 |
+
- type: map_at_10
|
276 |
+
value: 77.523
|
277 |
+
- type: map_at_100
|
278 |
+
value: 77.793
|
279 |
+
- type: map_at_1000
|
280 |
+
value: 77.79899999999999
|
281 |
+
- type: map_at_3
|
282 |
+
value: 75.878
|
283 |
+
- type: map_at_5
|
284 |
+
value: 76.849
|
285 |
+
- type: mrr_at_1
|
286 |
+
value: 69.44200000000001
|
287 |
+
- type: mrr_at_10
|
288 |
+
value: 77.55
|
289 |
+
- type: mrr_at_100
|
290 |
+
value: 77.819
|
291 |
+
- type: mrr_at_1000
|
292 |
+
value: 77.826
|
293 |
+
- type: mrr_at_3
|
294 |
+
value: 75.957
|
295 |
+
- type: mrr_at_5
|
296 |
+
value: 76.916
|
297 |
+
- type: ndcg_at_1
|
298 |
+
value: 69.44200000000001
|
299 |
+
- type: ndcg_at_10
|
300 |
+
value: 81.217
|
301 |
+
- type: ndcg_at_100
|
302 |
+
value: 82.45
|
303 |
+
- type: ndcg_at_1000
|
304 |
+
value: 82.636
|
305 |
+
- type: ndcg_at_3
|
306 |
+
value: 77.931
|
307 |
+
- type: ndcg_at_5
|
308 |
+
value: 79.655
|
309 |
+
- type: precision_at_1
|
310 |
+
value: 69.44200000000001
|
311 |
+
- type: precision_at_10
|
312 |
+
value: 9.357
|
313 |
+
- type: precision_at_100
|
314 |
+
value: 0.993
|
315 |
+
- type: precision_at_1000
|
316 |
+
value: 0.101
|
317 |
+
- type: precision_at_3
|
318 |
+
value: 28.1
|
319 |
+
- type: precision_at_5
|
320 |
+
value: 17.724
|
321 |
+
- type: recall_at_1
|
322 |
+
value: 69.178
|
323 |
+
- type: recall_at_10
|
324 |
+
value: 92.624
|
325 |
+
- type: recall_at_100
|
326 |
+
value: 98.209
|
327 |
+
- type: recall_at_1000
|
328 |
+
value: 99.684
|
329 |
+
- type: recall_at_3
|
330 |
+
value: 83.772
|
331 |
+
- type: recall_at_5
|
332 |
+
value: 87.882
|
333 |
+
- task:
|
334 |
+
type: Retrieval
|
335 |
+
dataset:
|
336 |
+
type: C-MTEB/DuRetrieval
|
337 |
+
name: MTEB DuRetrieval
|
338 |
+
config: default
|
339 |
+
split: dev
|
340 |
+
revision: None
|
341 |
+
metrics:
|
342 |
+
- type: map_at_1
|
343 |
+
value: 25.163999999999998
|
344 |
+
- type: map_at_10
|
345 |
+
value: 76.386
|
346 |
+
- type: map_at_100
|
347 |
+
value: 79.339
|
348 |
+
- type: map_at_1000
|
349 |
+
value: 79.39500000000001
|
350 |
+
- type: map_at_3
|
351 |
+
value: 52.959
|
352 |
+
- type: map_at_5
|
353 |
+
value: 66.59
|
354 |
+
- type: mrr_at_1
|
355 |
+
value: 87.9
|
356 |
+
- type: mrr_at_10
|
357 |
+
value: 91.682
|
358 |
+
- type: mrr_at_100
|
359 |
+
value: 91.747
|
360 |
+
- type: mrr_at_1000
|
361 |
+
value: 91.751
|
362 |
+
- type: mrr_at_3
|
363 |
+
value: 91.267
|
364 |
+
- type: mrr_at_5
|
365 |
+
value: 91.527
|
366 |
+
- type: ndcg_at_1
|
367 |
+
value: 87.9
|
368 |
+
- type: ndcg_at_10
|
369 |
+
value: 84.569
|
370 |
+
- type: ndcg_at_100
|
371 |
+
value: 87.83800000000001
|
372 |
+
- type: ndcg_at_1000
|
373 |
+
value: 88.322
|
374 |
+
- type: ndcg_at_3
|
375 |
+
value: 83.473
|
376 |
+
- type: ndcg_at_5
|
377 |
+
value: 82.178
|
378 |
+
- type: precision_at_1
|
379 |
+
value: 87.9
|
380 |
+
- type: precision_at_10
|
381 |
+
value: 40.605000000000004
|
382 |
+
- type: precision_at_100
|
383 |
+
value: 4.752
|
384 |
+
- type: precision_at_1000
|
385 |
+
value: 0.488
|
386 |
+
- type: precision_at_3
|
387 |
+
value: 74.9
|
388 |
+
- type: precision_at_5
|
389 |
+
value: 62.96000000000001
|
390 |
+
- type: recall_at_1
|
391 |
+
value: 25.163999999999998
|
392 |
+
- type: recall_at_10
|
393 |
+
value: 85.97399999999999
|
394 |
+
- type: recall_at_100
|
395 |
+
value: 96.63000000000001
|
396 |
+
- type: recall_at_1000
|
397 |
+
value: 99.016
|
398 |
+
- type: recall_at_3
|
399 |
+
value: 55.611999999999995
|
400 |
+
- type: recall_at_5
|
401 |
+
value: 71.936
|
402 |
+
- task:
|
403 |
+
type: Retrieval
|
404 |
+
dataset:
|
405 |
+
type: C-MTEB/EcomRetrieval
|
406 |
+
name: MTEB EcomRetrieval
|
407 |
+
config: default
|
408 |
+
split: dev
|
409 |
+
revision: None
|
410 |
+
metrics:
|
411 |
+
- type: map_at_1
|
412 |
+
value: 48.6
|
413 |
+
- type: map_at_10
|
414 |
+
value: 58.831
|
415 |
+
- type: map_at_100
|
416 |
+
value: 59.427
|
417 |
+
- type: map_at_1000
|
418 |
+
value: 59.44199999999999
|
419 |
+
- type: map_at_3
|
420 |
+
value: 56.383
|
421 |
+
- type: map_at_5
|
422 |
+
value: 57.753
|
423 |
+
- type: mrr_at_1
|
424 |
+
value: 48.6
|
425 |
+
- type: mrr_at_10
|
426 |
+
value: 58.831
|
427 |
+
- type: mrr_at_100
|
428 |
+
value: 59.427
|
429 |
+
- type: mrr_at_1000
|
430 |
+
value: 59.44199999999999
|
431 |
+
- type: mrr_at_3
|
432 |
+
value: 56.383
|
433 |
+
- type: mrr_at_5
|
434 |
+
value: 57.753
|
435 |
+
- type: ndcg_at_1
|
436 |
+
value: 48.6
|
437 |
+
- type: ndcg_at_10
|
438 |
+
value: 63.951
|
439 |
+
- type: ndcg_at_100
|
440 |
+
value: 66.72200000000001
|
441 |
+
- type: ndcg_at_1000
|
442 |
+
value: 67.13900000000001
|
443 |
+
- type: ndcg_at_3
|
444 |
+
value: 58.882
|
445 |
+
- type: ndcg_at_5
|
446 |
+
value: 61.373
|
447 |
+
- type: precision_at_1
|
448 |
+
value: 48.6
|
449 |
+
- type: precision_at_10
|
450 |
+
value: 8.01
|
451 |
+
- type: precision_at_100
|
452 |
+
value: 0.928
|
453 |
+
- type: precision_at_1000
|
454 |
+
value: 0.096
|
455 |
+
- type: precision_at_3
|
456 |
+
value: 22.033
|
457 |
+
- type: precision_at_5
|
458 |
+
value: 14.44
|
459 |
+
- type: recall_at_1
|
460 |
+
value: 48.6
|
461 |
+
- type: recall_at_10
|
462 |
+
value: 80.10000000000001
|
463 |
+
- type: recall_at_100
|
464 |
+
value: 92.80000000000001
|
465 |
+
- type: recall_at_1000
|
466 |
+
value: 96.1
|
467 |
+
- type: recall_at_3
|
468 |
+
value: 66.10000000000001
|
469 |
+
- type: recall_at_5
|
470 |
+
value: 72.2
|
471 |
+
- task:
|
472 |
+
type: Classification
|
473 |
+
dataset:
|
474 |
+
type: C-MTEB/IFlyTek-classification
|
475 |
+
name: MTEB IFlyTek
|
476 |
+
config: default
|
477 |
+
split: validation
|
478 |
+
revision: None
|
479 |
+
metrics:
|
480 |
+
- type: accuracy
|
481 |
+
value: 47.36437091188918
|
482 |
+
- type: f1
|
483 |
+
value: 36.60946954228577
|
484 |
+
- task:
|
485 |
+
type: Classification
|
486 |
+
dataset:
|
487 |
+
type: C-MTEB/JDReview-classification
|
488 |
+
name: MTEB JDReview
|
489 |
+
config: default
|
490 |
+
split: test
|
491 |
+
revision: None
|
492 |
+
metrics:
|
493 |
+
- type: accuracy
|
494 |
+
value: 79.5684803001876
|
495 |
+
- type: ap
|
496 |
+
value: 42.671935929201524
|
497 |
+
- type: f1
|
498 |
+
value: 73.31912729103752
|
499 |
+
- task:
|
500 |
+
type: STS
|
501 |
+
dataset:
|
502 |
+
type: C-MTEB/LCQMC
|
503 |
+
name: MTEB LCQMC
|
504 |
+
config: default
|
505 |
+
split: test
|
506 |
+
revision: None
|
507 |
+
metrics:
|
508 |
+
- type: cos_sim_pearson
|
509 |
+
value: 68.62670112113864
|
510 |
+
- type: cos_sim_spearman
|
511 |
+
value: 75.74009123170768
|
512 |
+
- type: euclidean_pearson
|
513 |
+
value: 73.93002595958237
|
514 |
+
- type: euclidean_spearman
|
515 |
+
value: 75.35222935003587
|
516 |
+
- type: manhattan_pearson
|
517 |
+
value: 73.89870445158144
|
518 |
+
- type: manhattan_spearman
|
519 |
+
value: 75.31714936339398
|
520 |
+
- task:
|
521 |
+
type: Reranking
|
522 |
+
dataset:
|
523 |
+
type: C-MTEB/Mmarco-reranking
|
524 |
+
name: MTEB MMarcoReranking
|
525 |
+
config: default
|
526 |
+
split: dev
|
527 |
+
revision: None
|
528 |
+
metrics:
|
529 |
+
- type: map
|
530 |
+
value: 31.5372713650176
|
531 |
+
- type: mrr
|
532 |
+
value: 30.163095238095238
|
533 |
+
- task:
|
534 |
+
type: Retrieval
|
535 |
+
dataset:
|
536 |
+
type: C-MTEB/MMarcoRetrieval
|
537 |
+
name: MTEB MMarcoRetrieval
|
538 |
+
config: default
|
539 |
+
split: dev
|
540 |
+
revision: None
|
541 |
+
metrics:
|
542 |
+
- type: map_at_1
|
543 |
+
value: 65.054
|
544 |
+
- type: map_at_10
|
545 |
+
value: 74.156
|
546 |
+
- type: map_at_100
|
547 |
+
value: 74.523
|
548 |
+
- type: map_at_1000
|
549 |
+
value: 74.535
|
550 |
+
- type: map_at_3
|
551 |
+
value: 72.269
|
552 |
+
- type: map_at_5
|
553 |
+
value: 73.41
|
554 |
+
- type: mrr_at_1
|
555 |
+
value: 67.24900000000001
|
556 |
+
- type: mrr_at_10
|
557 |
+
value: 74.78399999999999
|
558 |
+
- type: mrr_at_100
|
559 |
+
value: 75.107
|
560 |
+
- type: mrr_at_1000
|
561 |
+
value: 75.117
|
562 |
+
- type: mrr_at_3
|
563 |
+
value: 73.13499999999999
|
564 |
+
- type: mrr_at_5
|
565 |
+
value: 74.13499999999999
|
566 |
+
- type: ndcg_at_1
|
567 |
+
value: 67.24900000000001
|
568 |
+
- type: ndcg_at_10
|
569 |
+
value: 77.96300000000001
|
570 |
+
- type: ndcg_at_100
|
571 |
+
value: 79.584
|
572 |
+
- type: ndcg_at_1000
|
573 |
+
value: 79.884
|
574 |
+
- type: ndcg_at_3
|
575 |
+
value: 74.342
|
576 |
+
- type: ndcg_at_5
|
577 |
+
value: 76.278
|
578 |
+
- type: precision_at_1
|
579 |
+
value: 67.24900000000001
|
580 |
+
- type: precision_at_10
|
581 |
+
value: 9.466
|
582 |
+
- type: precision_at_100
|
583 |
+
value: 1.027
|
584 |
+
- type: precision_at_1000
|
585 |
+
value: 0.105
|
586 |
+
- type: precision_at_3
|
587 |
+
value: 27.955999999999996
|
588 |
+
- type: precision_at_5
|
589 |
+
value: 17.817
|
590 |
+
- type: recall_at_1
|
591 |
+
value: 65.054
|
592 |
+
- type: recall_at_10
|
593 |
+
value: 89.113
|
594 |
+
- type: recall_at_100
|
595 |
+
value: 96.369
|
596 |
+
- type: recall_at_1000
|
597 |
+
value: 98.714
|
598 |
+
- type: recall_at_3
|
599 |
+
value: 79.45400000000001
|
600 |
+
- type: recall_at_5
|
601 |
+
value: 84.06
|
602 |
+
- task:
|
603 |
+
type: Classification
|
604 |
+
dataset:
|
605 |
+
type: mteb/amazon_massive_intent
|
606 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
607 |
+
config: zh-CN
|
608 |
+
split: test
|
609 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
610 |
+
metrics:
|
611 |
+
- type: accuracy
|
612 |
+
value: 68.1977135171486
|
613 |
+
- type: f1
|
614 |
+
value: 67.23114308718404
|
615 |
+
- task:
|
616 |
+
type: Classification
|
617 |
+
dataset:
|
618 |
+
type: mteb/amazon_massive_scenario
|
619 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
620 |
+
config: zh-CN
|
621 |
+
split: test
|
622 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
623 |
+
metrics:
|
624 |
+
- type: accuracy
|
625 |
+
value: 71.92669804976462
|
626 |
+
- type: f1
|
627 |
+
value: 72.90628475628779
|
628 |
+
- task:
|
629 |
+
type: Retrieval
|
630 |
+
dataset:
|
631 |
+
type: C-MTEB/MedicalRetrieval
|
632 |
+
name: MTEB MedicalRetrieval
|
633 |
+
config: default
|
634 |
+
split: dev
|
635 |
+
revision: None
|
636 |
+
metrics:
|
637 |
+
- type: map_at_1
|
638 |
+
value: 49.2
|
639 |
+
- type: map_at_10
|
640 |
+
value: 54.539
|
641 |
+
- type: map_at_100
|
642 |
+
value: 55.135
|
643 |
+
- type: map_at_1000
|
644 |
+
value: 55.19199999999999
|
645 |
+
- type: map_at_3
|
646 |
+
value: 53.383
|
647 |
+
- type: map_at_5
|
648 |
+
value: 54.142999999999994
|
649 |
+
- type: mrr_at_1
|
650 |
+
value: 49.2
|
651 |
+
- type: mrr_at_10
|
652 |
+
value: 54.539
|
653 |
+
- type: mrr_at_100
|
654 |
+
value: 55.135999999999996
|
655 |
+
- type: mrr_at_1000
|
656 |
+
value: 55.19199999999999
|
657 |
+
- type: mrr_at_3
|
658 |
+
value: 53.383
|
659 |
+
- type: mrr_at_5
|
660 |
+
value: 54.142999999999994
|
661 |
+
- type: ndcg_at_1
|
662 |
+
value: 49.2
|
663 |
+
- type: ndcg_at_10
|
664 |
+
value: 57.123000000000005
|
665 |
+
- type: ndcg_at_100
|
666 |
+
value: 60.21300000000001
|
667 |
+
- type: ndcg_at_1000
|
668 |
+
value: 61.915
|
669 |
+
- type: ndcg_at_3
|
670 |
+
value: 54.772
|
671 |
+
- type: ndcg_at_5
|
672 |
+
value: 56.157999999999994
|
673 |
+
- type: precision_at_1
|
674 |
+
value: 49.2
|
675 |
+
- type: precision_at_10
|
676 |
+
value: 6.52
|
677 |
+
- type: precision_at_100
|
678 |
+
value: 0.8009999999999999
|
679 |
+
- type: precision_at_1000
|
680 |
+
value: 0.094
|
681 |
+
- type: precision_at_3
|
682 |
+
value: 19.6
|
683 |
+
- type: precision_at_5
|
684 |
+
value: 12.44
|
685 |
+
- type: recall_at_1
|
686 |
+
value: 49.2
|
687 |
+
- type: recall_at_10
|
688 |
+
value: 65.2
|
689 |
+
- type: recall_at_100
|
690 |
+
value: 80.10000000000001
|
691 |
+
- type: recall_at_1000
|
692 |
+
value: 93.89999999999999
|
693 |
+
- type: recall_at_3
|
694 |
+
value: 58.8
|
695 |
+
- type: recall_at_5
|
696 |
+
value: 62.2
|
697 |
+
- task:
|
698 |
+
type: Classification
|
699 |
+
dataset:
|
700 |
+
type: C-MTEB/MultilingualSentiment-classification
|
701 |
+
name: MTEB MultilingualSentiment
|
702 |
+
config: default
|
703 |
+
split: validation
|
704 |
+
revision: None
|
705 |
+
metrics:
|
706 |
+
- type: accuracy
|
707 |
+
value: 63.29333333333334
|
708 |
+
- type: f1
|
709 |
+
value: 63.03293854259612
|
710 |
+
- task:
|
711 |
+
type: PairClassification
|
712 |
+
dataset:
|
713 |
+
type: C-MTEB/OCNLI
|
714 |
+
name: MTEB Ocnli
|
715 |
+
config: default
|
716 |
+
split: validation
|
717 |
+
revision: None
|
718 |
+
metrics:
|
719 |
+
- type: cos_sim_accuracy
|
720 |
+
value: 75.69030860855442
|
721 |
+
- type: cos_sim_ap
|
722 |
+
value: 80.6157833772759
|
723 |
+
- type: cos_sim_f1
|
724 |
+
value: 77.87524366471735
|
725 |
+
- type: cos_sim_precision
|
726 |
+
value: 72.3076923076923
|
727 |
+
- type: cos_sim_recall
|
728 |
+
value: 84.37170010559663
|
729 |
+
- type: dot_accuracy
|
730 |
+
value: 67.78559826746074
|
731 |
+
- type: dot_ap
|
732 |
+
value: 72.00871467527499
|
733 |
+
- type: dot_f1
|
734 |
+
value: 72.58722247394654
|
735 |
+
- type: dot_precision
|
736 |
+
value: 63.57142857142857
|
737 |
+
- type: dot_recall
|
738 |
+
value: 84.58289334741288
|
739 |
+
- type: euclidean_accuracy
|
740 |
+
value: 75.20303194369248
|
741 |
+
- type: euclidean_ap
|
742 |
+
value: 80.98587256415605
|
743 |
+
- type: euclidean_f1
|
744 |
+
value: 77.26396917148362
|
745 |
+
- type: euclidean_precision
|
746 |
+
value: 71.03631532329496
|
747 |
+
- type: euclidean_recall
|
748 |
+
value: 84.68848996832101
|
749 |
+
- type: manhattan_accuracy
|
750 |
+
value: 75.20303194369248
|
751 |
+
- type: manhattan_ap
|
752 |
+
value: 80.93460699513219
|
753 |
+
- type: manhattan_f1
|
754 |
+
value: 77.124773960217
|
755 |
+
- type: manhattan_precision
|
756 |
+
value: 67.43083003952569
|
757 |
+
- type: manhattan_recall
|
758 |
+
value: 90.07391763463569
|
759 |
+
- type: max_accuracy
|
760 |
+
value: 75.69030860855442
|
761 |
+
- type: max_ap
|
762 |
+
value: 80.98587256415605
|
763 |
+
- type: max_f1
|
764 |
+
value: 77.87524366471735
|
765 |
+
- task:
|
766 |
+
type: Classification
|
767 |
+
dataset:
|
768 |
+
type: C-MTEB/OnlineShopping-classification
|
769 |
+
name: MTEB OnlineShopping
|
770 |
+
config: default
|
771 |
+
split: test
|
772 |
+
revision: None
|
773 |
+
metrics:
|
774 |
+
- type: accuracy
|
775 |
+
value: 87.00000000000001
|
776 |
+
- type: ap
|
777 |
+
value: 83.24372135949511
|
778 |
+
- type: f1
|
779 |
+
value: 86.95554191530607
|
780 |
+
- task:
|
781 |
+
type: STS
|
782 |
+
dataset:
|
783 |
+
type: C-MTEB/PAWSX
|
784 |
+
name: MTEB PAWSX
|
785 |
+
config: default
|
786 |
+
split: test
|
787 |
+
revision: None
|
788 |
+
metrics:
|
789 |
+
- type: cos_sim_pearson
|
790 |
+
value: 37.57616811591219
|
791 |
+
- type: cos_sim_spearman
|
792 |
+
value: 41.490259084930045
|
793 |
+
- type: euclidean_pearson
|
794 |
+
value: 38.9155043692188
|
795 |
+
- type: euclidean_spearman
|
796 |
+
value: 39.16056534305623
|
797 |
+
- type: manhattan_pearson
|
798 |
+
value: 38.76569892264335
|
799 |
+
- type: manhattan_spearman
|
800 |
+
value: 38.99891685590743
|
801 |
+
- task:
|
802 |
+
type: STS
|
803 |
+
dataset:
|
804 |
+
type: C-MTEB/QBQTC
|
805 |
+
name: MTEB QBQTC
|
806 |
+
config: default
|
807 |
+
split: test
|
808 |
+
revision: None
|
809 |
+
metrics:
|
810 |
+
- type: cos_sim_pearson
|
811 |
+
value: 35.44858610359665
|
812 |
+
- type: cos_sim_spearman
|
813 |
+
value: 38.11128146262466
|
814 |
+
- type: euclidean_pearson
|
815 |
+
value: 31.928644189822457
|
816 |
+
- type: euclidean_spearman
|
817 |
+
value: 34.384936631696554
|
818 |
+
- type: manhattan_pearson
|
819 |
+
value: 31.90586687414376
|
820 |
+
- type: manhattan_spearman
|
821 |
+
value: 34.35770153777186
|
822 |
+
- task:
|
823 |
+
type: STS
|
824 |
+
dataset:
|
825 |
+
type: mteb/sts22-crosslingual-sts
|
826 |
+
name: MTEB STS22 (zh)
|
827 |
+
config: zh
|
828 |
+
split: test
|
829 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
830 |
+
metrics:
|
831 |
+
- type: cos_sim_pearson
|
832 |
+
value: 66.54931957553592
|
833 |
+
- type: cos_sim_spearman
|
834 |
+
value: 69.25068863016632
|
835 |
+
- type: euclidean_pearson
|
836 |
+
value: 50.26525596106869
|
837 |
+
- type: euclidean_spearman
|
838 |
+
value: 63.83352741910006
|
839 |
+
- type: manhattan_pearson
|
840 |
+
value: 49.98798282198196
|
841 |
+
- type: manhattan_spearman
|
842 |
+
value: 63.87649521907841
|
843 |
+
- task:
|
844 |
+
type: STS
|
845 |
+
dataset:
|
846 |
+
type: C-MTEB/STSB
|
847 |
+
name: MTEB STSB
|
848 |
+
config: default
|
849 |
+
split: test
|
850 |
+
revision: None
|
851 |
+
metrics:
|
852 |
+
- type: cos_sim_pearson
|
853 |
+
value: 82.52782476625825
|
854 |
+
- type: cos_sim_spearman
|
855 |
+
value: 82.55618986168398
|
856 |
+
- type: euclidean_pearson
|
857 |
+
value: 78.48190631687673
|
858 |
+
- type: euclidean_spearman
|
859 |
+
value: 78.39479731354655
|
860 |
+
- type: manhattan_pearson
|
861 |
+
value: 78.51176592165885
|
862 |
+
- type: manhattan_spearman
|
863 |
+
value: 78.42363787303265
|
864 |
+
- task:
|
865 |
+
type: Reranking
|
866 |
+
dataset:
|
867 |
+
type: C-MTEB/T2Reranking
|
868 |
+
name: MTEB T2Reranking
|
869 |
+
config: default
|
870 |
+
split: dev
|
871 |
+
revision: None
|
872 |
+
metrics:
|
873 |
+
- type: map
|
874 |
+
value: 67.36693873615643
|
875 |
+
- type: mrr
|
876 |
+
value: 77.83847701797939
|
877 |
+
- task:
|
878 |
+
type: Retrieval
|
879 |
+
dataset:
|
880 |
+
type: C-MTEB/T2Retrieval
|
881 |
+
name: MTEB T2Retrieval
|
882 |
+
config: default
|
883 |
+
split: dev
|
884 |
+
revision: None
|
885 |
+
metrics:
|
886 |
+
- type: map_at_1
|
887 |
+
value: 25.795
|
888 |
+
- type: map_at_10
|
889 |
+
value: 72.258
|
890 |
+
- type: map_at_100
|
891 |
+
value: 76.049
|
892 |
+
- type: map_at_1000
|
893 |
+
value: 76.134
|
894 |
+
- type: map_at_3
|
895 |
+
value: 50.697
|
896 |
+
- type: map_at_5
|
897 |
+
value: 62.324999999999996
|
898 |
+
- type: mrr_at_1
|
899 |
+
value: 86.634
|
900 |
+
- type: mrr_at_10
|
901 |
+
value: 89.792
|
902 |
+
- type: mrr_at_100
|
903 |
+
value: 89.91900000000001
|
904 |
+
- type: mrr_at_1000
|
905 |
+
value: 89.923
|
906 |
+
- type: mrr_at_3
|
907 |
+
value: 89.224
|
908 |
+
- type: mrr_at_5
|
909 |
+
value: 89.608
|
910 |
+
- type: ndcg_at_1
|
911 |
+
value: 86.634
|
912 |
+
- type: ndcg_at_10
|
913 |
+
value: 80.589
|
914 |
+
- type: ndcg_at_100
|
915 |
+
value: 84.812
|
916 |
+
- type: ndcg_at_1000
|
917 |
+
value: 85.662
|
918 |
+
- type: ndcg_at_3
|
919 |
+
value: 82.169
|
920 |
+
- type: ndcg_at_5
|
921 |
+
value: 80.619
|
922 |
+
- type: precision_at_1
|
923 |
+
value: 86.634
|
924 |
+
- type: precision_at_10
|
925 |
+
value: 40.389
|
926 |
+
- type: precision_at_100
|
927 |
+
value: 4.93
|
928 |
+
- type: precision_at_1000
|
929 |
+
value: 0.513
|
930 |
+
- type: precision_at_3
|
931 |
+
value: 72.104
|
932 |
+
- type: precision_at_5
|
933 |
+
value: 60.425
|
934 |
+
- type: recall_at_1
|
935 |
+
value: 25.795
|
936 |
+
- type: recall_at_10
|
937 |
+
value: 79.565
|
938 |
+
- type: recall_at_100
|
939 |
+
value: 93.24799999999999
|
940 |
+
- type: recall_at_1000
|
941 |
+
value: 97.595
|
942 |
+
- type: recall_at_3
|
943 |
+
value: 52.583999999999996
|
944 |
+
- type: recall_at_5
|
945 |
+
value: 66.175
|
946 |
+
- task:
|
947 |
+
type: Classification
|
948 |
+
dataset:
|
949 |
+
type: C-MTEB/TNews-classification
|
950 |
+
name: MTEB TNews
|
951 |
+
config: default
|
952 |
+
split: validation
|
953 |
+
revision: None
|
954 |
+
metrics:
|
955 |
+
- type: accuracy
|
956 |
+
value: 47.648999999999994
|
957 |
+
- type: f1
|
958 |
+
value: 46.28925837008413
|
959 |
+
- task:
|
960 |
+
type: Clustering
|
961 |
+
dataset:
|
962 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
963 |
+
name: MTEB ThuNewsClusteringP2P
|
964 |
+
config: default
|
965 |
+
split: test
|
966 |
+
revision: None
|
967 |
+
metrics:
|
968 |
+
- type: v_measure
|
969 |
+
value: 54.07641891287953
|
970 |
+
- task:
|
971 |
+
type: Clustering
|
972 |
+
dataset:
|
973 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
974 |
+
name: MTEB ThuNewsClusteringS2S
|
975 |
+
config: default
|
976 |
+
split: test
|
977 |
+
revision: None
|
978 |
+
metrics:
|
979 |
+
- type: v_measure
|
980 |
+
value: 53.423702062353954
|
981 |
+
- task:
|
982 |
+
type: Retrieval
|
983 |
+
dataset:
|
984 |
+
type: C-MTEB/VideoRetrieval
|
985 |
+
name: MTEB VideoRetrieval
|
986 |
+
config: default
|
987 |
+
split: dev
|
988 |
+
revision: None
|
989 |
+
metrics:
|
990 |
+
- type: map_at_1
|
991 |
+
value: 55.7
|
992 |
+
- type: map_at_10
|
993 |
+
value: 65.923
|
994 |
+
- type: map_at_100
|
995 |
+
value: 66.42
|
996 |
+
- type: map_at_1000
|
997 |
+
value: 66.431
|
998 |
+
- type: map_at_3
|
999 |
+
value: 63.9
|
1000 |
+
- type: map_at_5
|
1001 |
+
value: 65.225
|
1002 |
+
- type: mrr_at_1
|
1003 |
+
value: 55.60000000000001
|
1004 |
+
- type: mrr_at_10
|
1005 |
+
value: 65.873
|
1006 |
+
- type: mrr_at_100
|
1007 |
+
value: 66.36999999999999
|
1008 |
+
- type: mrr_at_1000
|
1009 |
+
value: 66.381
|
1010 |
+
- type: mrr_at_3
|
1011 |
+
value: 63.849999999999994
|
1012 |
+
- type: mrr_at_5
|
1013 |
+
value: 65.17500000000001
|
1014 |
+
- type: ndcg_at_1
|
1015 |
+
value: 55.7
|
1016 |
+
- type: ndcg_at_10
|
1017 |
+
value: 70.621
|
1018 |
+
- type: ndcg_at_100
|
1019 |
+
value: 72.944
|
1020 |
+
- type: ndcg_at_1000
|
1021 |
+
value: 73.25399999999999
|
1022 |
+
- type: ndcg_at_3
|
1023 |
+
value: 66.547
|
1024 |
+
- type: ndcg_at_5
|
1025 |
+
value: 68.93599999999999
|
1026 |
+
- type: precision_at_1
|
1027 |
+
value: 55.7
|
1028 |
+
- type: precision_at_10
|
1029 |
+
value: 8.52
|
1030 |
+
- type: precision_at_100
|
1031 |
+
value: 0.958
|
1032 |
+
- type: precision_at_1000
|
1033 |
+
value: 0.098
|
1034 |
+
- type: precision_at_3
|
1035 |
+
value: 24.733
|
1036 |
+
- type: precision_at_5
|
1037 |
+
value: 16
|
1038 |
+
- type: recall_at_1
|
1039 |
+
value: 55.7
|
1040 |
+
- type: recall_at_10
|
1041 |
+
value: 85.2
|
1042 |
+
- type: recall_at_100
|
1043 |
+
value: 95.8
|
1044 |
+
- type: recall_at_1000
|
1045 |
+
value: 98.3
|
1046 |
+
- type: recall_at_3
|
1047 |
+
value: 74.2
|
1048 |
+
- type: recall_at_5
|
1049 |
+
value: 80
|
1050 |
+
- task:
|
1051 |
+
type: Classification
|
1052 |
+
dataset:
|
1053 |
+
type: C-MTEB/waimai-classification
|
1054 |
+
name: MTEB Waimai
|
1055 |
+
config: default
|
1056 |
+
split: test
|
1057 |
+
revision: None
|
1058 |
+
metrics:
|
1059 |
+
- type: accuracy
|
1060 |
+
value: 84.54
|
1061 |
+
- type: ap
|
1062 |
+
value: 66.13603199670062
|
1063 |
+
- type: f1
|
1064 |
+
value: 82.61420654584116
|
1065 |
---
|
1066 |
+
|
1067 |
+
<!-- TODO: add evaluation results here -->
|
1068 |
+
<br><br>
|
1069 |
+
|
1070 |
+
<p align="center">
|
1071 |
+
<img src="https://github.com/jina-ai/finetuner/blob/main/docs/_static/finetuner-logo-ani.svg?raw=true" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
|
1072 |
+
</p>
|
1073 |
+
|
1074 |
+
|
1075 |
+
<p align="center">
|
1076 |
+
<b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>, <a href="https://github.com/jina-ai/finetuner"><b>Finetuner</b></a> team.</b>
|
1077 |
+
</p>
|
1078 |
+
|
1079 |
+
|
1080 |
+
## Intended Usage & Model Info
|
1081 |
+
|
1082 |
+
`jina-embeddings-v2-base-zh` is a Chinese/English bilingual text **embedding model** supporting **8192 sequence length**. Our model has 161 million parameters.
|
1083 |
+
We have designed it for high performance in cross-language applications and trained it specifically to support mixed Chinese-English input without bias.
|
1084 |
+
|
1085 |
+
|
1086 |
+
You can use the embedding model either via the Jina AI's [Embedding platform](https://jina.ai/embeddings/), AWS SageMaker or in your private deployments.
|
1087 |
+
|
1088 |
+
## Usage Jina Embedding API
|
1089 |
+
|
1090 |
+
The following code snippet shows the usage of the Jina Embedding API:
|
1091 |
+
```
|
1092 |
+
curl https://api.jina.ai/v1/embeddings \
|
1093 |
+
-H "Content-Type: application/json" \
|
1094 |
+
-H "Authorization: Bearer jina_xxxxxxx" \
|
1095 |
+
-d '{
|
1096 |
+
"input": ["你的输入可以是纯中文", "or purely in English", "or like mixture of 中文 and 英文"],
|
1097 |
+
"model": "jina-embeddings-v2-base-zh"
|
1098 |
+
}'
|
1099 |
+
|
1100 |
+
```
|
1101 |
+
|
1102 |
+
Get your free API key on: https://jina.ai/embeddings/
|
1103 |
+
|
1104 |
+
## Opensource
|
1105 |
+
|
1106 |
+
We will opensource the full model in a few days!
|
1107 |
+
|
1108 |
+
## Contact
|
1109 |
+
|
1110 |
+
Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
|