bwang0911 commited on
Commit
fb3bde8
·
1 Parent(s): 7ba833c

refactor: rename task type to task

Browse files
Files changed (3) hide show
  1. README.md +8 -8
  2. custom_st.py +6 -6
  3. modules.json +1 -1
README.md CHANGED
@@ -21546,7 +21546,7 @@ Additionally, it features 5 [LoRA](https://arxiv.org/abs/2106.09685) adapters to
21546
 
21547
  ### Key Features:
21548
  - **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
21549
- - **Task-Specific Embedding:** Customize embeddings through the `task_type` argument with the following options:
21550
  - `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
21551
  - `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
21552
  - `separation`: Used for embeddings in clustering and re-ranking applications
@@ -21605,7 +21605,7 @@ model = AutoModel.from_pretrained("jinaai/jina-embeddings-v3", trust_remote_code
21605
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
21606
 
21607
  with torch.no_grad():
21608
- model_output = model(**encoded_input, task_type='retrieval.query')
21609
 
21610
  embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
21611
  embeddings = F.normalize(embeddings, p=2, dim=1)
@@ -21643,10 +21643,10 @@ texts = [
21643
  "Folge dem weißen Kaninchen.", # German
21644
  ]
21645
 
21646
- # When calling the `encode` function, you can choose a `task_type` based on the use case:
21647
  # 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
21648
- # Alternatively, you can choose not to pass a `task_type`, and no specific LoRA adapter will be used.
21649
- embeddings = model.encode(texts, task_type="text-matching")
21650
 
21651
  # Compute similarities
21652
  print(embeddings[0] @ embeddings[1].T)
@@ -21680,11 +21680,11 @@ from sentence_transformers import SentenceTransformer
21680
 
21681
  model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
21682
 
21683
- task_type = "retrieval.query"
21684
  embeddings = model.encode(
21685
  ["What is the weather like in Berlin today?"],
21686
- task_type=task_type,
21687
- prompt_name=task_type,
21688
  )
21689
  ```
21690
 
 
21546
 
21547
  ### Key Features:
21548
  - **Extended Sequence Length:** Supports up to 8192 tokens with RoPE.
21549
+ - **Task-Specific Embedding:** Customize embeddings through the `task` argument with the following options:
21550
  - `retrieval.query`: Used for query embeddings in asymmetric retrieval tasks
21551
  - `retrieval.passage`: Used for passage embeddings in asymmetric retrieval tasks
21552
  - `separation`: Used for embeddings in clustering and re-ranking applications
 
21605
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
21606
 
21607
  with torch.no_grad():
21608
+ model_output = model(**encoded_input, task='retrieval.query')
21609
 
21610
  embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
21611
  embeddings = F.normalize(embeddings, p=2, dim=1)
 
21643
  "Folge dem weißen Kaninchen.", # German
21644
  ]
21645
 
21646
+ # When calling the `encode` function, you can choose a `task` based on the use case:
21647
  # 'retrieval.query', 'retrieval.passage', 'separation', 'classification', 'text-matching'
21648
+ # Alternatively, you can choose not to pass a `task`, and no specific LoRA adapter will be used.
21649
+ embeddings = model.encode(texts, task="text-matching")
21650
 
21651
  # Compute similarities
21652
  print(embeddings[0] @ embeddings[1].T)
 
21680
 
21681
  model = SentenceTransformer("jinaai/jina-embeddings-v3", trust_remote_code=True)
21682
 
21683
+ task = "retrieval.query"
21684
  embeddings = model.encode(
21685
  ["What is the weather like in Berlin today?"],
21686
+ task=task,
21687
+ prompt_name=task,
21688
  )
21689
  ```
21690
 
custom_st.py CHANGED
@@ -91,19 +91,19 @@ class Transformer(nn.Module):
91
  self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
92
 
93
  def forward(
94
- self, features: Dict[str, torch.Tensor], task_type: Optional[str] = None
95
  ) -> Dict[str, torch.Tensor]:
96
  """Returns token_embeddings, cls_token"""
97
- if task_type and task_type not in self._lora_adaptations:
98
  raise ValueError(
99
- f"Unsupported task '{task_type}'. "
100
  f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
101
- f"Alternatively, don't pass the `task_type` argument to disable LoRA."
102
  )
103
 
104
  adapter_mask = None
105
- if task_type:
106
- task_id = self._adaptation_map[task_type]
107
  num_examples = features['input_ids'].size(0)
108
  adapter_mask = torch.full(
109
  (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
 
91
  self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__
92
 
93
  def forward(
94
+ self, features: Dict[str, torch.Tensor], task: Optional[str] = None
95
  ) -> Dict[str, torch.Tensor]:
96
  """Returns token_embeddings, cls_token"""
97
+ if task and task not in self._lora_adaptations:
98
  raise ValueError(
99
+ f"Unsupported task '{task}'. "
100
  f"Supported tasks are: {', '.join(self.config.lora_adaptations)}."
101
+ f"Alternatively, don't pass the `task` argument to disable LoRA."
102
  )
103
 
104
  adapter_mask = None
105
+ if task:
106
+ task_id = self._adaptation_map[task]
107
  num_examples = features['input_ids'].size(0)
108
  adapter_mask = torch.full(
109
  (num_examples,), task_id, dtype=torch.int32, device=features['input_ids'].device
modules.json CHANGED
@@ -4,7 +4,7 @@
4
  "name": "0",
5
  "path": "",
6
  "type": "custom_st.Transformer",
7
- "kwargs": ["task_type"]
8
  },
9
  {
10
  "idx": 1,
 
4
  "name": "0",
5
  "path": "",
6
  "type": "custom_st.Transformer",
7
+ "kwargs": ["task"]
8
  },
9
  {
10
  "idx": 1,