Jackmin108's picture
fix: inference issues
5365db8
raw
history blame
23.9 kB
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/layers/rotary.py
# Commit id: 3566596ad867ee415dd3c12616dd50c610176f6c
# Rotary varlen support from https://github.com/Dao-AILab/flash-attention/pull/556
# Copyright (c) 2023, Tri Dao.
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, repeat
if torch.cuda.is_available():
try:
from flash_attn.ops.triton.rotary import apply_rotary
except ImportError:
def apply_rotary(*args, **kwargs):
raise RuntimeError(
"FlashAttention is not installed. To proceed with training, please install FlashAttention. "
"For inference, you have two options: either install FlashAttention or disable it by setting use_flash_attn=False when loading the model."
)
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
cos, sin = (
cos[: x.shape[1]],
sin[: x.shape[1]],
)
cos = repeat(
cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
sin = repeat(
sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)"
)
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class ApplyRotaryEmb(torch.autograd.Function):
@staticmethod
def forward(
ctx,
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
out = apply_rotary(
x,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
interleaved=interleaved,
inplace=inplace,
)
if isinstance(seqlen_offsets, int):
ctx.save_for_backward(
cos, sin, cu_seqlens
) # Can't save int with save_for_backward
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.interleaved = interleaved
ctx.inplace = inplace
ctx.max_seqlen = max_seqlen
return out if not inplace else x
@staticmethod
def backward(ctx, do):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
if not ctx.interleaved and not ctx.inplace:
do = do.clone()
dx = apply_rotary(
do,
cos,
sin,
seqlen_offsets=seqlen_offsets,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
interleaved=ctx.interleaved,
inplace=ctx.inplace,
conjugate=True,
)
return dx, None, None, None, None, None, None, None
def apply_rotary_emb(
x,
cos,
sin,
interleaved=False,
inplace=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
cos, sin: (seqlen_rotary, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
inplace: if True, apply rotary embedding in-place.
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
else (total_seqlen, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding to the first rotary_dim of x.
"""
return ApplyRotaryEmb.apply(
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
)
# For backward compatibility
apply_rotary_emb_func = apply_rotary_emb
class ApplyRotaryEmbQKV_(torch.autograd.Function):
@staticmethod
def forward(
ctx,
qkv,
cos,
sin,
cos_k=None,
sin_k=None,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
use_flash_attn: bool = True,
):
# batch, seqlen, three, nheads, headdim = qkv.shape
assert qkv.shape[-3] == 3
if cos_k is None and sin_k is None and qkv.is_contiguous():
if use_flash_attn:
# Call 1 kernel instead of 2 kernels
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
# dimensions, we get the same tensor
qk = rearrange(qkv[..., :2, :, :], "... t h d -> ... (t h) d")
# qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
apply_rotary(
qk,
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
else:
q_rot = apply_rotary_emb_torch(
qkv[:, :, 0],
cos,
sin,
interleaved=interleaved,
)
k_rot = apply_rotary_emb_torch(
qkv[:, :, 1],
cos,
sin,
interleaved=interleaved,
)
qkv = torch.stack((q_rot, k_rot, qkv[:, :, 2]), dim=2)
else:
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
q, k = qkv[..., 0, :, :], qkv[..., 1, :, :]
apply_rotary(
q,
cos,
sin,
seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
apply_rotary(
k,
cos_k,
sin_k,
seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
ctx.save_for_backward(cos, sin, cos_k, sin_k)
if isinstance(seqlen_offsets, int):
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens)
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.max_seqlen = max_seqlen
ctx.interleaved = interleaved
return qkv
@staticmethod
def backward(ctx, dqkv):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cos_k, sin_k, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cos_k, sin_k, cu_seqlens = ctx.saved_tensors
if cos_k is None and sin_k is None and dqkv.is_contiguous():
# Call 1 kernel instead of 2 kernels
# We need dqkv to be contiguous so that when we reshape to combine (3, nheads)
# dimensions, we get the same tensor
dqk = rearrange(dqkv[..., :2, :, :], "... t h d -> ... (t h) d")
apply_rotary(
dqk,
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=ctx.interleaved,
inplace=True,
conjugate=True,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
)
else:
cos_k = cos if cos_k is None else cos_k
sin_k = sin if sin_k is None else sin_k
dq, dk = dqkv[..., 0, :, :], dqkv[..., 1, :, :]
apply_rotary(
dq,
cos,
sin,
seqlen_offsets,
interleaved=ctx.interleaved,
inplace=True,
conjugate=True,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
)
apply_rotary(
dk,
cos_k,
sin_k,
seqlen_offsets,
interleaved=ctx.interleaved,
inplace=True,
conjugate=True,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
)
return dqkv, None, None, None, None, None, None, None, None, None
def apply_rotary_emb_qkv_(
qkv,
cos,
sin,
cos_k=None,
sin_k=None,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
use_flash_attn=True,
):
"""
Arguments:
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 3, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
qkv: (batch_size, seqlen, 3, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 3, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
"""
return ApplyRotaryEmbQKV_.apply(
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, cu_seqlens, max_seqlen, use_flash_attn,
)
class ApplyRotaryEmbKV_(torch.autograd.Function):
@staticmethod
def forward(
ctx,
kv,
cos,
sin,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
# batch, seqlen, two, nheads, headdim = kv.shape
assert kv.shape[-3] == 2
k = kv[..., 0, :, :]
apply_rotary(
k,
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=interleaved,
inplace=True,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if isinstance(seqlen_offsets, int):
ctx.save_for_backward(
cos, sin, cu_seqlens
) # Can't save int with save_for_backward
ctx.seqlen_offsets = seqlen_offsets
else:
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
ctx.seqlen_offsets = None
ctx.max_seqlen = max_seqlen
ctx.interleaved = interleaved
return kv
@staticmethod
def backward(ctx, dkv):
seqlen_offsets = ctx.seqlen_offsets
if seqlen_offsets is None:
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
else:
cos, sin, cu_seqlens = ctx.saved_tensors
apply_rotary(
dkv[..., 0, :, :],
cos,
sin,
seqlen_offsets=seqlen_offsets,
interleaved=ctx.interleaved,
inplace=True,
conjugate=True,
cu_seqlens=cu_seqlens,
max_seqlen=ctx.max_seqlen,
)
return dkv, None, None, None, None, None, None
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
def apply_rotary_emb_kv_(
kv,
cos,
sin,
interleaved=False,
seqlen_offsets: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
):
"""
Arguments:
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 2, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
1st half and 2nd half (GPT-NeoX style).
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
Most commonly used in inference when we have KV cache.
cu_seqlens: (batch + 1,) or None
max_seqlen: int
Return:
kv: (batch_size, seqlen, 2, nheads, headdim) if cu_seqlens is None
else (total_seqlen, 2, nheads, headdim)
rotary_dim must be <= headdim
Apply rotary embedding *inplace* to the first rotary_dim of K.
"""
return ApplyRotaryEmbKV_.apply(
kv, cos, sin, interleaved, seqlen_offsets, cu_seqlens, max_seqlen
)
class RotaryEmbedding(torch.nn.Module):
"""
The rotary position embeddings from RoFormer_ (Su et. al).
A crucial insight from the method is that the query and keys are
transformed by rotation matrices which depend on the relative positions.
Other implementations are available in the Rotary Transformer repo_ and in
GPT-NeoX_, GPT-NeoX was an inspiration
.. _RoFormer: https://arxiv.org/abs/2104.09864
.. _repo: https://github.com/ZhuiyiTechnology/roformer
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
"""
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
pos_idx_in_fp32=True,
device=None,
use_flash_attn=True,
):
"""
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
of 1st half and 2nd half (GPT-NeoX style).
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
otherwise they might be in lower precision.
This option was added because previously (before 2023-07-02), when we construct
the position indices, we use the dtype of self.inv_freq. In most cases this would
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
self.inv_freq would be bf16, and the position indices are also in bf16.
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
embeddings for some positions will coincide.
To maintain compatibility with models previously trained in pure bf16,
we add this option.
"""
super().__init__()
self.dim = dim
self._base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
self.use_flash_attn = use_flash_attn
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = self._compute_inv_freq(device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.interleaved = interleaved
self.scale_base = scale_base
scale = (
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
/ (1.4 * dim)
if scale_base is not None
else None
)
self.register_buffer("scale", scale, persistent=False)
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
@property
def base(self):
return self._base
@base.setter
def base(self, new_base):
if new_base > 0:
self._base = float(new_base)
else:
raise ValueError("Rotary base value must be positive")
def _compute_inv_freq(self, device=None):
return 1.0 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
# Reset the tables if the sequence length has changed,
# if we're on a new device (possibly due to tracing for instance),
# or if we're switching from inference mode to training
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
# will be large. Having it in bf16 will lose a lot of precision and cause the
# cos & sin output to change significantly.
# We want to recompute self.inv_freq if it was not loaded in fp32
if self.inv_freq.dtype != torch.float32:
inv_freq = self._compute_inv_freq(device=device)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
inv_freq = self.inv_freq
# Don't do einsum, it converts fp32 to fp16 under AMP
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** rearrange(
power, "s -> s 1"
)
# We want the multiplication by scale to happen in fp32
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(
self,
qkv: torch.Tensor,
kv: Optional[torch.Tensor] = None,
seqlen_offset: Union[int, torch.Tensor] = 0,
cu_seqlens: Optional[torch.Tensor] = None,
max_seqlen: Optional[int] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
qkv: (batch, seqlen, 3, nheads, headdim) if kv is none,
else it's just q of shape (batch, seqlen, nheads, headdim)
kv: (batch, seqlen, 2, nheads, headdim)
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
Most commonly used in inference when we have KV cache.
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
should pass in max_seqlen, which will update the cos / sin cache up to that length.
Apply rotary embedding *inplace* to qkv and / or kv.
"""
if cu_seqlens is not None:
assert max_seqlen is not None
seqlen = qkv.shape[1] if max_seqlen is None else max_seqlen
if max_seqlen is not None:
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
elif isinstance(seqlen_offset, int):
self._update_cos_sin_cache(
seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype
)
if kv is None:
if self.scale is None:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
use_flash_attn=self.use_flash_attn,
)
else:
return apply_rotary_emb_qkv_(
qkv,
self._cos_cached,
self._sin_cached,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
use_flash_attn=self.use_flash_attn,
)
else:
q = qkv
q = apply_rotary_emb_func(
q,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
inplace=True,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
if self.scale is None:
kv = apply_rotary_emb_kv_(
kv,
self._cos_cached,
self._sin_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
else:
kv = apply_rotary_emb_kv_(
kv,
self._cos_k_cached,
self._sin_k_cached,
interleaved=self.interleaved,
seqlen_offsets=seqlen_offset,
cu_seqlens=cu_seqlens,
max_seqlen=max_seqlen,
)
return q, kv