moontidef
commited on
Commit
·
08469c4
1
Parent(s):
13c4251
feat: add support for sentence classifier
Browse files- config.json +5 -1
- convert_roberta_weights_to_flash.py +16 -6
- modeling_xlm_roberta.py +116 -1
config.json
CHANGED
@@ -3,8 +3,12 @@
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
-
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM"
|
|
|
7 |
},
|
|
|
|
|
|
|
8 |
"attention_probs_dropout_prob": 0.1,
|
9 |
"bos_token_id": 0,
|
10 |
"eos_token_id": 2,
|
|
|
3 |
"AutoConfig": "configuration_xlm_roberta.XLMRobertaFlashConfig",
|
4 |
"AutoModel": "modeling_xlm_roberta.XLMRobertaModel",
|
5 |
"AutoModelForPreTraining": "modeling_xlm_roberta.XLMRobertaForPreTraining",
|
6 |
+
"AutoModelForMaskedLM": "modeling_xlm_roberta.XLMRobertaForMaskedLM",
|
7 |
+
"AutoModelForSequenceClassification":"modeling_xlm_roberta.XLMRobertaForSequenceClassification"
|
8 |
},
|
9 |
+
"architectures": [
|
10 |
+
"XLMRobertaModel"
|
11 |
+
],
|
12 |
"attention_probs_dropout_prob": 0.1,
|
13 |
"bos_token_id": 0,
|
14 |
"eos_token_id": 2,
|
convert_roberta_weights_to_flash.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import re
|
2 |
from collections import OrderedDict
|
3 |
from transformers import PretrainedConfig
|
4 |
-
from transformers import XLMRobertaForMaskedLM
|
5 |
|
6 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig
|
7 |
-
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as
|
|
|
8 |
import torch
|
9 |
|
10 |
import click
|
@@ -137,14 +138,23 @@ def remap_state_dict(state_dict, config: PretrainedConfig):
|
|
137 |
|
138 |
@click.command()
|
139 |
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
|
|
|
|
140 |
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
141 |
-
def main(model_name, output):
|
142 |
-
|
|
|
|
|
|
|
|
|
143 |
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
144 |
state_dict = roberta_model.state_dict()
|
145 |
new_state_dict = remap_state_dict(state_dict, config)
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
148 |
|
149 |
for k, v in flash_model.state_dict().items():
|
150 |
if k not in new_state_dict:
|
|
|
1 |
import re
|
2 |
from collections import OrderedDict
|
3 |
from transformers import PretrainedConfig
|
4 |
+
from transformers import XLMRobertaForMaskedLM, XLMRobertaForSequenceClassification
|
5 |
|
6 |
from .configuration_xlm_roberta import XLMRobertaFlashConfig as BertConfig
|
7 |
+
from .modeling_xlm_roberta import XLMRobertaForMaskedLM as FlashXLMRobertaForMaskedLM
|
8 |
+
from .modeling_xlm_roberta import XLMRobertaForSequenceClassification as FlashXLMRobertaForSequenceClassification
|
9 |
import torch
|
10 |
|
11 |
import click
|
|
|
138 |
|
139 |
@click.command()
|
140 |
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
141 |
+
@click.option('--revision', default='main', help='revision')
|
142 |
+
@click.option('--task', default='masked_lm', help='task')
|
143 |
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
144 |
+
def main(model_name, revision, task, output):
|
145 |
+
|
146 |
+
if task == 'masked_lm':
|
147 |
+
roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name, revision=revision)
|
148 |
+
elif task == 'sequence_classification':
|
149 |
+
roberta_model = XLMRobertaForSequenceClassification.from_pretrained(model_name, revision=revision,num_labels=1)
|
150 |
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
151 |
state_dict = roberta_model.state_dict()
|
152 |
new_state_dict = remap_state_dict(state_dict, config)
|
153 |
+
|
154 |
+
if task == 'masked_lm':
|
155 |
+
flash_model = FlashXLMRobertaForMaskedLM(config)
|
156 |
+
elif task == 'sequence_classification':
|
157 |
+
flash_model = FlashXLMRobertaForSequenceClassification(config)
|
158 |
|
159 |
for k, v in flash_model.state_dict().items():
|
160 |
if k not in new_state_dict:
|
modeling_xlm_roberta.py
CHANGED
@@ -19,10 +19,11 @@ import torch
|
|
19 |
import torch.nn as nn
|
20 |
import torch.nn.functional as F
|
21 |
import torch.utils.checkpoint
|
|
|
22 |
from einops import rearrange
|
23 |
from transformers import PretrainedConfig
|
24 |
from transformers.modeling_utils import PreTrainedModel
|
25 |
-
from transformers.modeling_outputs import MaskedLMOutput
|
26 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
27 |
|
28 |
from transformers.models.bert.modeling_bert import (
|
@@ -1139,3 +1140,117 @@ def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
|
1139 |
)
|
1140 |
|
1141 |
return state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
import torch.nn as nn
|
20 |
import torch.nn.functional as F
|
21 |
import torch.utils.checkpoint
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
from einops import rearrange
|
24 |
from transformers import PretrainedConfig
|
25 |
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.modeling_outputs import MaskedLMOutput,SequenceClassifierOutput
|
27 |
from transformers.models.xlm_roberta.modeling_xlm_roberta import XLMRobertaLMHead
|
28 |
|
29 |
from transformers.models.bert.modeling_bert import (
|
|
|
1140 |
)
|
1141 |
|
1142 |
return state_dict
|
1143 |
+
|
1144 |
+
|
1145 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->XLMRoberta
|
1146 |
+
class XLMRobertaClassificationHead(nn.Module):
|
1147 |
+
"""Head for sentence-level classification tasks."""
|
1148 |
+
|
1149 |
+
def __init__(self, config):
|
1150 |
+
super().__init__()
|
1151 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
1152 |
+
classifier_dropout = (
|
1153 |
+
config.classifier_dropout
|
1154 |
+
if config.classifier_dropout is not None
|
1155 |
+
else config.hidden_dropout_prob
|
1156 |
+
)
|
1157 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1158 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
1159 |
+
|
1160 |
+
def forward(self, features, **kwargs):
|
1161 |
+
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
1162 |
+
x = self.dropout(x)
|
1163 |
+
x = self.dense(x)
|
1164 |
+
x = torch.tanh(x)
|
1165 |
+
x = self.dropout(x)
|
1166 |
+
x = self.out_proj(x)
|
1167 |
+
return x
|
1168 |
+
|
1169 |
+
|
1170 |
+
# Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification with Roberta->XLMRoberta, ROBERTA->XLM_ROBERTA
|
1171 |
+
class XLMRobertaForSequenceClassification(XLMRobertaPreTrainedModel):
|
1172 |
+
def __init__(self, config):
|
1173 |
+
super().__init__(config)
|
1174 |
+
self.num_labels = config.num_labels
|
1175 |
+
self.config = config
|
1176 |
+
|
1177 |
+
self.roberta = XLMRobertaModel(config, add_pooling_layer=False)
|
1178 |
+
self.classifier = XLMRobertaClassificationHead(config)
|
1179 |
+
|
1180 |
+
# Initialize weights and apply final processing
|
1181 |
+
self.post_init()
|
1182 |
+
|
1183 |
+
def forward(
|
1184 |
+
self,
|
1185 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1186 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1187 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1188 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1189 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1190 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1191 |
+
labels: Optional[torch.LongTensor] = None,
|
1192 |
+
output_attentions: Optional[bool] = None,
|
1193 |
+
output_hidden_states: Optional[bool] = None,
|
1194 |
+
return_dict: Optional[bool] = None,
|
1195 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1196 |
+
r"""
|
1197 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1198 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1199 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1200 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1201 |
+
"""
|
1202 |
+
return_dict = (
|
1203 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
outputs = self.roberta(
|
1207 |
+
input_ids,
|
1208 |
+
attention_mask=attention_mask,
|
1209 |
+
token_type_ids=token_type_ids,
|
1210 |
+
position_ids=position_ids,
|
1211 |
+
head_mask=head_mask,
|
1212 |
+
inputs_embeds=inputs_embeds,
|
1213 |
+
output_attentions=output_attentions,
|
1214 |
+
output_hidden_states=output_hidden_states,
|
1215 |
+
return_dict=return_dict,
|
1216 |
+
)
|
1217 |
+
sequence_output = outputs[0]
|
1218 |
+
logits = self.classifier(sequence_output)
|
1219 |
+
|
1220 |
+
loss = None
|
1221 |
+
if labels is not None:
|
1222 |
+
# move labels to correct device to enable model parallelism
|
1223 |
+
labels = labels.to(logits.device)
|
1224 |
+
if self.config.problem_type is None:
|
1225 |
+
if self.num_labels == 1:
|
1226 |
+
self.config.problem_type = "regression"
|
1227 |
+
elif self.num_labels > 1 and (
|
1228 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
1229 |
+
):
|
1230 |
+
self.config.problem_type = "single_label_classification"
|
1231 |
+
else:
|
1232 |
+
self.config.problem_type = "multi_label_classification"
|
1233 |
+
|
1234 |
+
if self.config.problem_type == "regression":
|
1235 |
+
loss_fct = MSELoss()
|
1236 |
+
if self.num_labels == 1:
|
1237 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1238 |
+
else:
|
1239 |
+
loss = loss_fct(logits, labels)
|
1240 |
+
elif self.config.problem_type == "single_label_classification":
|
1241 |
+
loss_fct = CrossEntropyLoss()
|
1242 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1243 |
+
elif self.config.problem_type == "multi_label_classification":
|
1244 |
+
loss_fct = BCEWithLogitsLoss()
|
1245 |
+
loss = loss_fct(logits, labels)
|
1246 |
+
|
1247 |
+
if not return_dict:
|
1248 |
+
output = (logits,) + outputs[2:]
|
1249 |
+
return ((loss,) + output) if loss is not None else output
|
1250 |
+
|
1251 |
+
return SequenceClassifierOutput(
|
1252 |
+
loss=loss,
|
1253 |
+
logits=logits,
|
1254 |
+
hidden_states=outputs.hidden_states,
|
1255 |
+
attentions=outputs.attentions,
|
1256 |
+
)
|