feat: configurable use_reentrant (#37)
Browse files- feat: expose configuration of use_reentrant (5b03f30bf613f3424b7c6499d2de1b93b5b5e3cd)
- feat: set proper model_type (3154d934ec4694e16d6bc60e4f0cb1cc2a292d81)
Co-authored-by: Georgios Mastrapas <[email protected]>
- configuration_xlm_roberta.py +6 -0
- modeling_xlm_roberta.py +5 -4
configuration_xlm_roberta.py
CHANGED
@@ -5,6 +5,9 @@ from transformers import PretrainedConfig
|
|
5 |
|
6 |
|
7 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
|
|
|
|
|
|
8 |
def __init__(
|
9 |
self,
|
10 |
vocab_size: int = 250002,
|
@@ -25,6 +28,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
25 |
position_embedding_type: str = "rotary",
|
26 |
rotary_emb_base: float = 10000.0,
|
27 |
use_cache: bool = True,
|
|
|
28 |
classifier_dropout: Optional[float] = None,
|
29 |
lora_adaptations: Optional[List[str]] = None,
|
30 |
lora_prompts: Optional[Dict[str, str]] = None,
|
@@ -62,6 +66,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
62 |
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
|
63 |
rotary_emb_base (float): Base for rotary embeddings.
|
64 |
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
|
|
|
65 |
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
|
66 |
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
|
67 |
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
|
@@ -100,6 +105,7 @@ class XLMRobertaFlashConfig(PretrainedConfig):
|
|
100 |
self.position_embedding_type = position_embedding_type
|
101 |
self.rotary_emb_base = rotary_emb_base
|
102 |
self.use_cache = use_cache
|
|
|
103 |
self.classifier_dropout = classifier_dropout
|
104 |
self.load_trained_adapters = load_trained_adapters
|
105 |
self.lora_adaptations = lora_adaptations
|
|
|
5 |
|
6 |
|
7 |
class XLMRobertaFlashConfig(PretrainedConfig):
|
8 |
+
|
9 |
+
model_type = "xlm-roberta"
|
10 |
+
|
11 |
def __init__(
|
12 |
self,
|
13 |
vocab_size: int = 250002,
|
|
|
28 |
position_embedding_type: str = "rotary",
|
29 |
rotary_emb_base: float = 10000.0,
|
30 |
use_cache: bool = True,
|
31 |
+
use_reentrant: bool = False,
|
32 |
classifier_dropout: Optional[float] = None,
|
33 |
lora_adaptations: Optional[List[str]] = None,
|
34 |
lora_prompts: Optional[Dict[str, str]] = None,
|
|
|
66 |
position_embedding_type (str): Type of position embeddings. Options are 'absolute', 'alibi', or 'rotary'.
|
67 |
rotary_emb_base (float): Base for rotary embeddings.
|
68 |
use_cache (bool): Whether or not the model should return the last key/values attentions (not used by all models).
|
69 |
+
use_reentrant (bool): Whether or not the model should enable the 'use_reentrant' flag in gradient checkpointing.
|
70 |
classifier_dropout (Optional[float]): The dropout ratio for the classification head.
|
71 |
lora_adaptations (Optional[List[str]]): LoRA adaptations configuration.
|
72 |
lora_prompts (Optional[Dict[str, str]]): LoRA prompts configuration.
|
|
|
105 |
self.position_embedding_type = position_embedding_type
|
106 |
self.rotary_emb_base = rotary_emb_base
|
107 |
self.use_cache = use_cache
|
108 |
+
self.use_reentrant = use_reentrant
|
109 |
self.classifier_dropout = classifier_dropout
|
110 |
self.load_trained_adapters = load_trained_adapters
|
111 |
self.lora_adaptations = lora_adaptations
|
modeling_xlm_roberta.py
CHANGED
@@ -181,6 +181,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
181 |
def __init__(self, config: XLMRobertaFlashConfig):
|
182 |
super().__init__()
|
183 |
self.use_flash_attn = get_use_flash_attn(config)
|
|
|
184 |
self.layers = nn.ModuleList(
|
185 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
186 |
)
|
@@ -210,7 +211,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
210 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
211 |
layer,
|
212 |
hidden_states,
|
213 |
-
use_reentrant=
|
214 |
mixer_kwargs=mixer_kwargs,
|
215 |
)
|
216 |
else:
|
@@ -234,7 +235,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
234 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
235 |
layer,
|
236 |
hidden_states,
|
237 |
-
use_reentrant=
|
238 |
mixer_kwargs=mixer_kwargs,
|
239 |
)
|
240 |
else:
|
@@ -246,7 +247,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
246 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
247 |
layer,
|
248 |
hidden_states,
|
249 |
-
use_reentrant=
|
250 |
mixer_kwargs=mixer_kwargs,
|
251 |
)
|
252 |
else:
|
@@ -284,7 +285,7 @@ class XLMRobertaEncoder(nn.Module):
|
|
284 |
torch.utils.checkpoint.checkpoint(
|
285 |
self.layers[-1],
|
286 |
hidden_states_subset,
|
287 |
-
use_reentrant=
|
288 |
mixer_kwargs=mixer_kwargs,
|
289 |
)
|
290 |
else:
|
|
|
181 |
def __init__(self, config: XLMRobertaFlashConfig):
|
182 |
super().__init__()
|
183 |
self.use_flash_attn = get_use_flash_attn(config)
|
184 |
+
self.use_reentrant = config.use_reentrant
|
185 |
self.layers = nn.ModuleList(
|
186 |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
187 |
)
|
|
|
211 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
212 |
layer,
|
213 |
hidden_states,
|
214 |
+
use_reentrant=self.use_reentrant,
|
215 |
mixer_kwargs=mixer_kwargs,
|
216 |
)
|
217 |
else:
|
|
|
235 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
236 |
layer,
|
237 |
hidden_states,
|
238 |
+
use_reentrant=self.use_reentrant,
|
239 |
mixer_kwargs=mixer_kwargs,
|
240 |
)
|
241 |
else:
|
|
|
247 |
hidden_states = torch.utils.checkpoint.checkpoint(
|
248 |
layer,
|
249 |
hidden_states,
|
250 |
+
use_reentrant=self.use_reentrant,
|
251 |
mixer_kwargs=mixer_kwargs,
|
252 |
)
|
253 |
else:
|
|
|
285 |
torch.utils.checkpoint.checkpoint(
|
286 |
self.layers[-1],
|
287 |
hidden_states_subset,
|
288 |
+
use_reentrant=self.use_reentrant,
|
289 |
mixer_kwargs=mixer_kwargs,
|
290 |
)
|
291 |
else:
|