michael-guenther
commited on
Commit
·
2e3ebcb
1
Parent(s):
2aec9c9
upload model
Browse files- bert_padding.py +218 -0
- block.py +400 -0
- config.json +27 -0
- configuration_bert.py +42 -0
- embedding.py +62 -0
- mha.py +735 -0
- mlp.py +194 -0
- modeling_bert.py +784 -0
- pytorch_model.bin +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
bert_padding.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
|
2 |
+
# Commit id: c94cd09744d20f0ac587a351ff6ff2e8ad11ae1b
|
3 |
+
|
4 |
+
# Previously adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from einops import rearrange, repeat
|
9 |
+
|
10 |
+
|
11 |
+
class IndexFirstAxis(torch.autograd.Function):
|
12 |
+
@staticmethod
|
13 |
+
def forward(ctx, input, indices):
|
14 |
+
ctx.save_for_backward(indices)
|
15 |
+
assert input.ndim >= 2
|
16 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
17 |
+
second_dim = other_shape.numel()
|
18 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
19 |
+
# return input[indices]
|
20 |
+
return torch.gather(
|
21 |
+
rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
22 |
+
).reshape(-1, *other_shape)
|
23 |
+
|
24 |
+
@staticmethod
|
25 |
+
def backward(ctx, grad_output):
|
26 |
+
(indices,) = ctx.saved_tensors
|
27 |
+
assert grad_output.ndim >= 2
|
28 |
+
other_shape = grad_output.shape[1:]
|
29 |
+
grad_output = rearrange(grad_output, "b ... -> b (...)")
|
30 |
+
grad_input = torch.zeros(
|
31 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
32 |
+
device=grad_output.device,
|
33 |
+
dtype=grad_output.dtype,
|
34 |
+
)
|
35 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
36 |
+
# grad_input[indices] = grad_output
|
37 |
+
grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
38 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
39 |
+
|
40 |
+
|
41 |
+
index_first_axis = IndexFirstAxis.apply
|
42 |
+
|
43 |
+
|
44 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
45 |
+
@staticmethod
|
46 |
+
def forward(ctx, values, indices, first_axis_dim):
|
47 |
+
ctx.save_for_backward(indices)
|
48 |
+
assert indices.ndim == 1
|
49 |
+
assert values.ndim >= 2
|
50 |
+
output = torch.zeros(
|
51 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
52 |
+
)
|
53 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
54 |
+
output[indices] = values
|
55 |
+
# output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
|
56 |
+
return output
|
57 |
+
|
58 |
+
@staticmethod
|
59 |
+
def backward(ctx, grad_output):
|
60 |
+
(indices,) = ctx.saved_tensors
|
61 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
62 |
+
grad_values = grad_output[indices]
|
63 |
+
# grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
|
64 |
+
return grad_values, None, None
|
65 |
+
|
66 |
+
|
67 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
68 |
+
|
69 |
+
|
70 |
+
class IndexFirstAxisResidual(torch.autograd.Function):
|
71 |
+
@staticmethod
|
72 |
+
def forward(ctx, input, indices):
|
73 |
+
ctx.save_for_backward(indices)
|
74 |
+
assert input.ndim >= 2
|
75 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
76 |
+
second_dim = other_shape.numel()
|
77 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
78 |
+
output = input[indices]
|
79 |
+
# We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
|
80 |
+
# memory format to channel_first. In other words, input might not be contiguous.
|
81 |
+
# If we don't detach, Pytorch complains about output being a view and is being modified inplace
|
82 |
+
return output, input.detach()
|
83 |
+
|
84 |
+
@staticmethod
|
85 |
+
def backward(ctx, grad_output, grad_residual):
|
86 |
+
(indices,) = ctx.saved_tensors
|
87 |
+
assert grad_output.ndim >= 2
|
88 |
+
other_shape = grad_output.shape[1:]
|
89 |
+
assert grad_residual.shape[1:] == other_shape
|
90 |
+
grad_input = grad_residual
|
91 |
+
# grad_input[indices] += grad_output
|
92 |
+
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
|
93 |
+
indices = indices.expand_as(grad_output)
|
94 |
+
grad_input.scatter_add_(0, indices, grad_output)
|
95 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
96 |
+
|
97 |
+
|
98 |
+
index_first_axis_residual = IndexFirstAxisResidual.apply
|
99 |
+
|
100 |
+
|
101 |
+
def unpad_input(hidden_states, attention_mask):
|
102 |
+
"""
|
103 |
+
Arguments:
|
104 |
+
hidden_states: (batch, seqlen, ...)
|
105 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
106 |
+
Return:
|
107 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
108 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
109 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
110 |
+
max_seqlen_in_batch: int
|
111 |
+
"""
|
112 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
113 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
114 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
115 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
116 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
117 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
118 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
119 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
120 |
+
# so we write custom forward and backward to make it a bit faster.
|
121 |
+
return (
|
122 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
123 |
+
indices,
|
124 |
+
cu_seqlens,
|
125 |
+
max_seqlen_in_batch,
|
126 |
+
)
|
127 |
+
|
128 |
+
|
129 |
+
def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
|
130 |
+
"""
|
131 |
+
Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
|
132 |
+
The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
|
133 |
+
|
134 |
+
For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
|
135 |
+
```
|
136 |
+
[
|
137 |
+
[2, 3, 0, 0, 0, 0],
|
138 |
+
[3, 2, 0, 0, 0, 0],
|
139 |
+
[6, 0, 0, 0, 0, 0]
|
140 |
+
]
|
141 |
+
```
|
142 |
+
, which refers to the 3D-attention mask:
|
143 |
+
```
|
144 |
+
[
|
145 |
+
[
|
146 |
+
[1, 0, 0, 0, 0, 0],
|
147 |
+
[1, 1, 0, 0, 0, 0],
|
148 |
+
[0, 0, 1, 0, 0, 0],
|
149 |
+
[0, 0, 1, 1, 0, 0],
|
150 |
+
[0, 0, 1, 1, 1, 0],
|
151 |
+
[0, 0, 0, 0, 0, 1]
|
152 |
+
],
|
153 |
+
[
|
154 |
+
[1, 0, 0, 0, 0, 0],
|
155 |
+
[1, 1, 0, 0, 0, 0],
|
156 |
+
[1, 1, 1, 0, 0, 0],
|
157 |
+
[0, 0, 0, 1, 0, 0],
|
158 |
+
[0, 0, 0, 1, 1, 0],
|
159 |
+
[0, 0, 0, 0, 0, 1]
|
160 |
+
],
|
161 |
+
[
|
162 |
+
[1, 0, 0, 0, 0, 0],
|
163 |
+
[1, 1, 0, 0, 0, 0],
|
164 |
+
[1, 1, 1, 0, 0, 0],
|
165 |
+
[1, 1, 1, 1, 0, 0],
|
166 |
+
[1, 1, 1, 1, 1, 0],
|
167 |
+
[1, 1, 1, 1, 1, 1]
|
168 |
+
]
|
169 |
+
]
|
170 |
+
```.
|
171 |
+
|
172 |
+
Arguments:
|
173 |
+
hidden_states: (batch, seqlen, ...)
|
174 |
+
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
|
175 |
+
Return:
|
176 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
177 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
178 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
179 |
+
max_seqlen_in_batch: int
|
180 |
+
"""
|
181 |
+
length = attention_mask_in_length.sum(dim=-1)
|
182 |
+
seqlen = attention_mask_in_length.size(-1)
|
183 |
+
attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length),
|
184 |
+
seqlen) < length.unsqueeze(
|
185 |
+
1)
|
186 |
+
real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten()
|
187 |
+
seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
|
188 |
+
indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
|
189 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
190 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
191 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
192 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
193 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
194 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
195 |
+
# so we write custom forward and backward to make it a bit faster.
|
196 |
+
return (
|
197 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
198 |
+
indices,
|
199 |
+
cu_seqlens,
|
200 |
+
max_seqlen_in_batch,
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
def pad_input(hidden_states, indices, batch, seqlen):
|
205 |
+
"""
|
206 |
+
Arguments:
|
207 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
208 |
+
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
|
209 |
+
batch: int, batch size for the padded sequence.
|
210 |
+
seqlen: int, maximum sequence length for the padded sequence.
|
211 |
+
Return:
|
212 |
+
hidden_states: (batch, seqlen, ...)
|
213 |
+
"""
|
214 |
+
dim = hidden_states.shape[-1]
|
215 |
+
# output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
|
216 |
+
# output[indices] = hidden_states
|
217 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
218 |
+
return rearrange(output, "(b s) ... -> b s ...", b=batch)
|
block.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/block.py
|
2 |
+
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
+
|
4 |
+
# Copyright (c) 2024, Tri Dao.
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch import Tensor
|
13 |
+
from torchvision.ops import StochasticDepth
|
14 |
+
|
15 |
+
from .mha import MHA
|
16 |
+
from .mlp import Mlp
|
17 |
+
|
18 |
+
try:
|
19 |
+
from flash_attn.ops.triton.layer_norm import layer_norm_fn, RMSNorm
|
20 |
+
except ImportError:
|
21 |
+
layer_norm_fn, RMSNorm = None, None
|
22 |
+
|
23 |
+
|
24 |
+
class Block(nn.Module):
|
25 |
+
def __init__(
|
26 |
+
self,
|
27 |
+
dim,
|
28 |
+
mixer_cls=None,
|
29 |
+
mlp_cls=None,
|
30 |
+
norm_cls=nn.LayerNorm,
|
31 |
+
dropout_cls=nn.Dropout,
|
32 |
+
prenorm=True,
|
33 |
+
resid_dropout1=0.0,
|
34 |
+
resid_dropout2=0.0,
|
35 |
+
drop_path1=0.0,
|
36 |
+
drop_path2=0.0,
|
37 |
+
fused_dropout_add_ln=False,
|
38 |
+
return_residual=False,
|
39 |
+
residual_in_fp32=False,
|
40 |
+
sequence_parallel=False,
|
41 |
+
mark_shared_params=False,
|
42 |
+
):
|
43 |
+
"""
|
44 |
+
For prenorm=True, this Block has a slightly different structure compared to a regular
|
45 |
+
prenorm Transformer block.
|
46 |
+
The standard block is: LN -> MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add.
|
47 |
+
[Ref: https://arxiv.org/abs/2002.04745]
|
48 |
+
Here we have: Dropout -> Add -> LN -> MHA -> Dropout -> Add -> LN -> MLP, returning both
|
49 |
+
the hidden_states (output of the MLP) and the residual.
|
50 |
+
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
|
51 |
+
The residual needs to be provided (except for the very first block).
|
52 |
+
|
53 |
+
For prenorm=False, this Block has the same structure as a regular postnorm Transformer
|
54 |
+
block: MHA -> Dropout -> Add -> LN -> MLP -> Dropout -> Add -> LN.
|
55 |
+
|
56 |
+
return_residual: whether each of the sub-layers (mixer and mlp) will return the residual.
|
57 |
+
This is for performance reason: for post-norm architecture, returning the input allows us
|
58 |
+
to fuse the backward of nn.Linear with the residual connection.
|
59 |
+
"""
|
60 |
+
super().__init__()
|
61 |
+
self.prenorm = prenorm
|
62 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
63 |
+
self.return_residual = return_residual
|
64 |
+
self.residual_in_fp32 = residual_in_fp32
|
65 |
+
if self.residual_in_fp32:
|
66 |
+
assert self.prenorm, "residual_in_fp32 is only compatible with prenorm=True"
|
67 |
+
if mixer_cls is None:
|
68 |
+
mixer_cls = partial(MHA, num_heads=dim // 64)
|
69 |
+
if mlp_cls is None:
|
70 |
+
mlp_cls = partial(Mlp, hidden_features=4 * dim)
|
71 |
+
self.mixer = mixer_cls(dim)
|
72 |
+
self.dropout1 = dropout_cls(resid_dropout1)
|
73 |
+
self.drop_path1 = StochasticDepth(drop_path1, mode="row")
|
74 |
+
self.norm1 = norm_cls(dim)
|
75 |
+
self.mlp = mlp_cls(dim)
|
76 |
+
if not isinstance(self.mlp, nn.Identity):
|
77 |
+
self.dropout2 = dropout_cls(resid_dropout2)
|
78 |
+
self.drop_path2 = StochasticDepth(drop_path2, mode="row")
|
79 |
+
self.norm2 = norm_cls(dim)
|
80 |
+
|
81 |
+
if self.fused_dropout_add_ln:
|
82 |
+
assert layer_norm_fn is not None, "Triton is not installed"
|
83 |
+
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
|
84 |
+
self.dropout1, nn.Dropout
|
85 |
+
)
|
86 |
+
|
87 |
+
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
|
88 |
+
# then the input to each worker in the tensor parallel group will be different.
|
89 |
+
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
|
90 |
+
# For now this is not an issue because we always use sequence_parallel=True during training
|
91 |
+
# and only use sequence_parallel=False during inference.
|
92 |
+
|
93 |
+
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
|
94 |
+
if sequence_parallel:
|
95 |
+
for p in self.norm1.parameters():
|
96 |
+
p._sequence_parallel = True
|
97 |
+
if hasattr(self, "norm2"):
|
98 |
+
for p in self.norm2.parameters():
|
99 |
+
p._sequence_parallel = True
|
100 |
+
# Mark the norm parameters as "shared_params" so that we sync their values at init.
|
101 |
+
if mark_shared_params:
|
102 |
+
for p in self.norm1.parameters():
|
103 |
+
p._shared_params = True
|
104 |
+
if hasattr(self, "norm2"):
|
105 |
+
for p in self.norm2.parameters():
|
106 |
+
p._shared_params = True
|
107 |
+
|
108 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
109 |
+
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
110 |
+
|
111 |
+
def forward(
|
112 |
+
self,
|
113 |
+
hidden_states: Tensor,
|
114 |
+
residual: Optional[Tensor] = None,
|
115 |
+
mixer_subset=None,
|
116 |
+
mixer_kwargs=None,
|
117 |
+
):
|
118 |
+
r"""Pass the input through the encoder layer.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
hidden_states: the sequence to the encoder layer (required).
|
122 |
+
residual: if postnorm, residual=None, If prenorm, hidden_states = Attn/MLP(LN(residual))
|
123 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
124 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
125 |
+
about the CLS token in the last layer.
|
126 |
+
"""
|
127 |
+
if self.prenorm:
|
128 |
+
if not self.fused_dropout_add_ln:
|
129 |
+
dropped = self.drop_path1(self.dropout1(hidden_states))
|
130 |
+
residual = (dropped + residual) if residual is not None else dropped
|
131 |
+
hidden_states = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
132 |
+
if self.residual_in_fp32:
|
133 |
+
residual = residual.to(torch.float32)
|
134 |
+
else:
|
135 |
+
if self.drop_path1.p == 0 or not self.training:
|
136 |
+
rowscale1 = None
|
137 |
+
else:
|
138 |
+
rowscale1 = self.drop_path1(
|
139 |
+
torch.ones(
|
140 |
+
hidden_states.shape[:-1],
|
141 |
+
device=hidden_states.device,
|
142 |
+
dtype=hidden_states.dtype,
|
143 |
+
)
|
144 |
+
)
|
145 |
+
hidden_states, residual = layer_norm_fn(
|
146 |
+
hidden_states,
|
147 |
+
self.norm1.weight,
|
148 |
+
self.norm1.bias,
|
149 |
+
residual=residual,
|
150 |
+
eps=self.norm1.eps,
|
151 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
152 |
+
rowscale=rowscale1,
|
153 |
+
prenorm=True,
|
154 |
+
residual_in_fp32=self.residual_in_fp32,
|
155 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm)
|
156 |
+
)
|
157 |
+
if mixer_kwargs is None:
|
158 |
+
mixer_kwargs = {}
|
159 |
+
if mixer_subset is not None:
|
160 |
+
mixer_kwargs["mixer_subset"] = mixer_subset
|
161 |
+
hidden_states = self.mixer(hidden_states, **mixer_kwargs)
|
162 |
+
if mixer_subset is not None:
|
163 |
+
residual = residual[:, mixer_subset]
|
164 |
+
if not isinstance(self.mlp, nn.Identity):
|
165 |
+
if not self.fused_dropout_add_ln:
|
166 |
+
dropped = self.drop_path2(self.dropout2(hidden_states))
|
167 |
+
residual = (dropped + residual) if residual is not None else dropped
|
168 |
+
hidden_states = self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
169 |
+
if self.residual_in_fp32:
|
170 |
+
residual = residual.to(torch.float32)
|
171 |
+
else:
|
172 |
+
if self.drop_path2.p == 0 or not self.training:
|
173 |
+
rowscale2 = None
|
174 |
+
else:
|
175 |
+
rowscale2 = self.drop_path2(
|
176 |
+
torch.ones(
|
177 |
+
hidden_states.shape[:-1],
|
178 |
+
device=hidden_states.device,
|
179 |
+
dtype=hidden_states.dtype,
|
180 |
+
)
|
181 |
+
)
|
182 |
+
hidden_states, residual = layer_norm_fn(
|
183 |
+
hidden_states,
|
184 |
+
self.norm2.weight,
|
185 |
+
self.norm2.bias,
|
186 |
+
residual=residual,
|
187 |
+
eps=self.norm2.eps,
|
188 |
+
dropout_p=self.dropout2.p if self.training else 0.0,
|
189 |
+
rowscale=rowscale2,
|
190 |
+
prenorm=True,
|
191 |
+
residual_in_fp32=self.residual_in_fp32,
|
192 |
+
is_rms_norm=isinstance(self.norm2, RMSNorm)
|
193 |
+
)
|
194 |
+
hidden_states = self.mlp(hidden_states)
|
195 |
+
return hidden_states, residual
|
196 |
+
else:
|
197 |
+
assert residual is None
|
198 |
+
mixer_out = self.mixer(
|
199 |
+
hidden_states, **(mixer_kwargs if mixer_kwargs is not None else {})
|
200 |
+
)
|
201 |
+
if self.return_residual: # mixer out is actually a pair here
|
202 |
+
mixer_out, hidden_states = mixer_out
|
203 |
+
if not self.fused_dropout_add_ln:
|
204 |
+
hidden_states = self.norm1(
|
205 |
+
(self.drop_path1(self.dropout1(mixer_out)) + hidden_states).to(
|
206 |
+
dtype=self.norm1.weight.dtype
|
207 |
+
)
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
if self.drop_path1.p == 0 or not self.training:
|
211 |
+
rowscale1 = None
|
212 |
+
else:
|
213 |
+
rowscale1 = self.drop_path1(
|
214 |
+
torch.ones(
|
215 |
+
mixer_out.shape[:-1], device=mixer_out.device, dtype=mixer_out.dtype
|
216 |
+
)
|
217 |
+
)
|
218 |
+
hidden_states = layer_norm_fn(
|
219 |
+
mixer_out,
|
220 |
+
self.norm1.weight,
|
221 |
+
self.norm1.bias,
|
222 |
+
residual=hidden_states,
|
223 |
+
eps=self.norm1.eps,
|
224 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
225 |
+
rowscale=rowscale1,
|
226 |
+
prenorm=False,
|
227 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm)
|
228 |
+
)
|
229 |
+
if not isinstance(self.mlp, nn.Identity):
|
230 |
+
mlp_out = self.mlp(hidden_states)
|
231 |
+
if self.return_residual: # mlp out is actually a pair here
|
232 |
+
mlp_out, hidden_states = mlp_out
|
233 |
+
if not self.fused_dropout_add_ln:
|
234 |
+
hidden_states = self.norm2(
|
235 |
+
(self.drop_path2(self.dropout2(mlp_out)) + hidden_states).to(
|
236 |
+
dtype=self.norm2.weight.dtype
|
237 |
+
)
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
if self.drop_path2.p == 0 or not self.training:
|
241 |
+
rowscale2 = None
|
242 |
+
else:
|
243 |
+
rowscale2 = self.drop_path2(
|
244 |
+
torch.ones(
|
245 |
+
mlp_out.shape[:-1], device=mlp_out.device, dtype=mlp_out.dtype
|
246 |
+
)
|
247 |
+
)
|
248 |
+
hidden_states = layer_norm_fn(
|
249 |
+
mlp_out,
|
250 |
+
self.norm2.weight,
|
251 |
+
self.norm2.bias,
|
252 |
+
residual=hidden_states,
|
253 |
+
eps=self.norm2.eps,
|
254 |
+
dropout_p=self.dropout2.p if self.training else 0.0,
|
255 |
+
rowscale=rowscale2,
|
256 |
+
prenorm=False,
|
257 |
+
is_rms_norm=isinstance(self.norm2, RMSNorm)
|
258 |
+
)
|
259 |
+
return hidden_states
|
260 |
+
|
261 |
+
|
262 |
+
class ParallelBlock(nn.Module):
|
263 |
+
"""The attention (mixer) and MLP blocks are done in parallel, similar to GPT-J, GPT-NeoX,
|
264 |
+
and PaLM.
|
265 |
+
"""
|
266 |
+
|
267 |
+
def __init__(
|
268 |
+
self,
|
269 |
+
dim,
|
270 |
+
mixer_cls=None,
|
271 |
+
mlp_cls=None,
|
272 |
+
norm_cls=nn.LayerNorm,
|
273 |
+
dropout_cls=nn.Dropout,
|
274 |
+
resid_dropout1=0.0,
|
275 |
+
resid_dropout2=0.0,
|
276 |
+
tied_norm=False,
|
277 |
+
fused_dropout_add_ln=False,
|
278 |
+
residual_in_fp32=False,
|
279 |
+
sequence_parallel=False,
|
280 |
+
mark_shared_params=False,
|
281 |
+
):
|
282 |
+
"""
|
283 |
+
This Block has a slightly different structure compared to a regular
|
284 |
+
prenorm Transformer block.
|
285 |
+
The standard block is: LN -> MHA / MLP -> Dropout -> Add.
|
286 |
+
[Ref: https://arxiv.org/abs/2002.04745]
|
287 |
+
Here we have: Dropout -> Add -> LN -> MHA / MLP, returning both
|
288 |
+
the hidden_states (output1 of the MHA / MLP) and the residual.
|
289 |
+
This is for performance reasons, as we can fuse the dropout, add and LayerNorm.
|
290 |
+
The residual needs to be provided (except for the very first block).
|
291 |
+
"""
|
292 |
+
super().__init__()
|
293 |
+
self.tied_norm = tied_norm
|
294 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
295 |
+
self.residual_in_fp32 = residual_in_fp32
|
296 |
+
if mixer_cls is None:
|
297 |
+
mixer_cls = partial(MHA, num_heads=dim // 64)
|
298 |
+
if mlp_cls is None:
|
299 |
+
mlp_cls = partial(Mlp, hidden_features=4 * dim)
|
300 |
+
self.mixer = mixer_cls(dim)
|
301 |
+
self.dropout1 = dropout_cls(resid_dropout1)
|
302 |
+
self.norm1 = norm_cls(dim)
|
303 |
+
self.mlp = mlp_cls(dim)
|
304 |
+
self.dropout2 = dropout_cls(resid_dropout2)
|
305 |
+
if not self.tied_norm:
|
306 |
+
self.norm2 = norm_cls(dim)
|
307 |
+
|
308 |
+
if self.fused_dropout_add_ln:
|
309 |
+
assert layer_norm_fn is not None, "Triton is not installed"
|
310 |
+
assert isinstance(self.norm1, (nn.LayerNorm, RMSNorm)) and isinstance(
|
311 |
+
self.dropout1, nn.Dropout
|
312 |
+
)
|
313 |
+
|
314 |
+
# TD [2023-01-07]: TODO: During training, if sequence_parallel is False and dropout != 0.0,
|
315 |
+
# then the input to each worker in the tensor parallel group will be different.
|
316 |
+
# This would produce wrong outputs? Somehow we'd need to sync the RNG state across workers.
|
317 |
+
# For now this is not an issue because we always use sequence_parallel=True during training
|
318 |
+
# and only use sequence_parallel=False during inference.
|
319 |
+
|
320 |
+
# Mark the norm parameters as "sequence_parallel" so that we run all-reduce on their grads.
|
321 |
+
if sequence_parallel:
|
322 |
+
for p in self.norm1.parameters():
|
323 |
+
p._sequence_parallel = True
|
324 |
+
if hasattr(self, "norm2"):
|
325 |
+
for p in self.norm2.parameters():
|
326 |
+
p._sequence_parallel = True
|
327 |
+
# Mark the norm parameters as "shared_params" so that we sync their values at init.
|
328 |
+
if mark_shared_params:
|
329 |
+
for p in self.norm1.parameters():
|
330 |
+
p._shared_params = True
|
331 |
+
if hasattr(self, "norm2"):
|
332 |
+
for p in self.norm2.parameters():
|
333 |
+
p._shared_params = True
|
334 |
+
|
335 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
|
336 |
+
return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
|
337 |
+
|
338 |
+
def forward(
|
339 |
+
self,
|
340 |
+
hidden_states1: Tensor,
|
341 |
+
hidden_states2: Optional[Tensor] = None,
|
342 |
+
residual: Optional[Tensor] = None,
|
343 |
+
mixer_kwargs=None,
|
344 |
+
):
|
345 |
+
r"""Pass the input through the encoder layer.
|
346 |
+
|
347 |
+
Args:
|
348 |
+
hidden_states1: the output of the previous attention (mixer) or embedding layer.
|
349 |
+
hidden_states2: the output of the previous MLP layer (if None, will use hidden_states1).
|
350 |
+
residual.
|
351 |
+
"""
|
352 |
+
# TODO: Ideally we should only do the allgather / allreduce once for
|
353 |
+
# the Linear to MLP & Attention
|
354 |
+
if not self.fused_dropout_add_ln:
|
355 |
+
dropped1 = self.dropout1(hidden_states1)
|
356 |
+
# For the very 1st block, we only want 1 dropout, not two different dropouts
|
357 |
+
if hidden_states2 is not None:
|
358 |
+
dropped2 = self.dropout2(hidden_states2)
|
359 |
+
residual = (
|
360 |
+
(residual + dropped1 + dropped2)
|
361 |
+
if residual is not None
|
362 |
+
else dropped1 + dropped2
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
residual = (residual + dropped1) if residual is not None else dropped1
|
366 |
+
hidden_states1 = self.norm1(residual.to(dtype=self.norm1.weight.dtype))
|
367 |
+
hidden_states2 = (
|
368 |
+
self.norm2(residual.to(dtype=self.norm2.weight.dtype))
|
369 |
+
if not self.tied_norm
|
370 |
+
else hidden_states1
|
371 |
+
)
|
372 |
+
if self.residual_in_fp32:
|
373 |
+
residual = residual.to(torch.float32)
|
374 |
+
else:
|
375 |
+
weight2, bias2 = (
|
376 |
+
(self.norm2.weight, self.norm2.bias) if not self.tied_norm else (None, None)
|
377 |
+
)
|
378 |
+
hidden_states1, *rest, residual = layer_norm_fn(
|
379 |
+
hidden_states1,
|
380 |
+
self.norm1.weight,
|
381 |
+
self.norm1.bias,
|
382 |
+
residual=residual,
|
383 |
+
x1=hidden_states2,
|
384 |
+
weight1=weight2,
|
385 |
+
bias1=bias2,
|
386 |
+
eps=self.norm1.eps,
|
387 |
+
dropout_p=self.dropout1.p if self.training else 0.0,
|
388 |
+
prenorm=True,
|
389 |
+
residual_in_fp32=self.residual_in_fp32,
|
390 |
+
is_rms_norm=isinstance(self.norm1, RMSNorm)
|
391 |
+
)
|
392 |
+
if self.tied_norm:
|
393 |
+
hidden_states2 = hidden_states1
|
394 |
+
else:
|
395 |
+
hidden_states2, = rest
|
396 |
+
if mixer_kwargs is None:
|
397 |
+
mixer_kwargs = {}
|
398 |
+
hidden_states1 = self.mixer(hidden_states1, **mixer_kwargs)
|
399 |
+
hidden_states2 = self.mlp(hidden_states2)
|
400 |
+
return hidden_states1, hidden_states2, residual
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoConfig": "configuration_bert.BertConfig",
|
4 |
+
"AutoModel": "modeling_bert.BertModel",
|
5 |
+
"AutoModelForPreTraining": "modeling_bert.BertForPreTraining",
|
6 |
+
"AutoModelForMaskedLM": "modeling_bert.BertForPreTraining"
|
7 |
+
},
|
8 |
+
"attention_probs_dropout_prob": 0.1,
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"eos_token_id": 2,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"transformers_version": "4.17.0.dev0",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 250002
|
27 |
+
}
|
configuration_bert.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class BertConfig(PretrainedConfig):
|
4 |
+
def __init__(
|
5 |
+
self,
|
6 |
+
vocab_size=30522,
|
7 |
+
hidden_size=768,
|
8 |
+
num_hidden_layers=12,
|
9 |
+
num_attention_heads=12,
|
10 |
+
intermediate_size=3072,
|
11 |
+
hidden_act="gelu",
|
12 |
+
hidden_dropout_prob=0.1,
|
13 |
+
attention_probs_dropout_prob=0.1,
|
14 |
+
max_position_embeddings=512,
|
15 |
+
type_vocab_size=2,
|
16 |
+
initializer_range=0.02,
|
17 |
+
layer_norm_eps=1e-12,
|
18 |
+
pad_token_id=1,
|
19 |
+
bos_token_id=0,
|
20 |
+
eos_token_id=2,
|
21 |
+
position_embedding_type="absolute",
|
22 |
+
use_cache=True,
|
23 |
+
classifier_dropout=None,
|
24 |
+
**kwargs,
|
25 |
+
):
|
26 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
27 |
+
|
28 |
+
self.vocab_size = vocab_size
|
29 |
+
self.hidden_size = hidden_size
|
30 |
+
self.num_hidden_layers = num_hidden_layers
|
31 |
+
self.num_attention_heads = num_attention_heads
|
32 |
+
self.hidden_act = hidden_act
|
33 |
+
self.intermediate_size = intermediate_size
|
34 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
35 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
36 |
+
self.max_position_embeddings = max_position_embeddings
|
37 |
+
self.type_vocab_size = type_vocab_size
|
38 |
+
self.initializer_range = initializer_range
|
39 |
+
self.layer_norm_eps = layer_norm_eps
|
40 |
+
self.position_embedding_type = position_embedding_type
|
41 |
+
self.use_cache = use_cache
|
42 |
+
self.classifier_dropout = classifier_dropout
|
embedding.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/embedding.py
|
2 |
+
# Commit id: f1a73d074002226c42ce65a1df170ecff9f022c0
|
3 |
+
|
4 |
+
# Copyright (c) 2022, Tri Dao.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import Tensor
|
10 |
+
|
11 |
+
from transformers.models.xlm_roberta.modeling_xlm_roberta import create_position_ids_from_input_ids
|
12 |
+
|
13 |
+
|
14 |
+
class BertEmbeddings(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
embed_dim,
|
18 |
+
vocab_size,
|
19 |
+
max_position_embeddings,
|
20 |
+
type_vocab_size,
|
21 |
+
padding_idx=None,
|
22 |
+
device=None,
|
23 |
+
dtype=None,
|
24 |
+
):
|
25 |
+
"""
|
26 |
+
If max_position_embeddings <= 0, there's no position embeddings
|
27 |
+
If type_vocab_size <= 0, there's no token type embeddings
|
28 |
+
"""
|
29 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
30 |
+
super().__init__()
|
31 |
+
self.word_embeddings = nn.Embedding(
|
32 |
+
vocab_size, embed_dim, padding_idx=padding_idx, **factory_kwargs
|
33 |
+
)
|
34 |
+
self.max_position_embeddings = max_position_embeddings
|
35 |
+
self.type_vocab_size = type_vocab_size
|
36 |
+
if self.max_position_embeddings > 0:
|
37 |
+
self.position_embeddings = nn.Embedding(
|
38 |
+
max_position_embeddings, embed_dim, **factory_kwargs
|
39 |
+
)
|
40 |
+
if self.type_vocab_size > 0:
|
41 |
+
self.token_type_embeddings = nn.Embedding(type_vocab_size, embed_dim, **factory_kwargs)
|
42 |
+
|
43 |
+
def forward(self, input_ids, position_ids=None, token_type_ids=None):
|
44 |
+
"""
|
45 |
+
input_ids: (batch, seqlen)
|
46 |
+
position_ids: (batch, seqlen)
|
47 |
+
token_type_ids: (batch, seqlen)
|
48 |
+
"""
|
49 |
+
batch_size, seqlen = input_ids.shape
|
50 |
+
embeddings = self.word_embeddings(input_ids)
|
51 |
+
if self.max_position_embeddings > 0:
|
52 |
+
if position_ids is None:
|
53 |
+
position_ids =create_position_ids_from_input_ids(input_ids, padding_idx=self.word_embeddings.padding_idx).to(input_ids.device)
|
54 |
+
# position_ids = torch.arange(seqlen, dtype=torch.long, device=input_ids.device)
|
55 |
+
position_embeddings = self.position_embeddings(position_ids)
|
56 |
+
embeddings = embeddings + position_embeddings
|
57 |
+
if self.type_vocab_size > 0:
|
58 |
+
if token_type_ids is None:
|
59 |
+
token_type_ids = torch.zeros(seqlen, dtype=torch.long, device=input_ids.device)
|
60 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
61 |
+
embeddings = embeddings + token_type_embeddings
|
62 |
+
return embeddings
|
mha.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py
|
2 |
+
# Commit id: 6bbc532388e61185a92e2a563126739967b4c8c5
|
3 |
+
|
4 |
+
# Copyright (c) 2023, Tri Dao.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
|
13 |
+
from flash_attn.utils.distributed import get_dim_for_local_rank
|
14 |
+
|
15 |
+
try:
|
16 |
+
from flash_attn import (
|
17 |
+
flash_attn_kvpacked_func,
|
18 |
+
flash_attn_qkvpacked_func,
|
19 |
+
flash_attn_varlen_kvpacked_func,
|
20 |
+
flash_attn_varlen_qkvpacked_func,
|
21 |
+
flash_attn_with_kvcache,
|
22 |
+
)
|
23 |
+
except ImportError:
|
24 |
+
flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
|
25 |
+
flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
|
26 |
+
flash_attn_with_kvcache = None
|
27 |
+
|
28 |
+
try:
|
29 |
+
from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
|
30 |
+
except ImportError:
|
31 |
+
FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
|
32 |
+
|
33 |
+
try:
|
34 |
+
from flash_attn.layers.rotary import RotaryEmbedding
|
35 |
+
except ImportError:
|
36 |
+
RotaryEmbedding = None
|
37 |
+
|
38 |
+
|
39 |
+
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
|
40 |
+
def get_alibi_slopes(nheads):
|
41 |
+
def get_slopes_power_of_2(nheads):
|
42 |
+
start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
|
43 |
+
ratio = start
|
44 |
+
return [start * ratio**i for i in range(nheads)]
|
45 |
+
|
46 |
+
if math.log2(nheads).is_integer():
|
47 |
+
return get_slopes_power_of_2(nheads)
|
48 |
+
else:
|
49 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
|
50 |
+
return (
|
51 |
+
get_slopes_power_of_2(closest_power_of_2)
|
52 |
+
+ get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2]
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
class FlashSelfAttention(nn.Module):
|
57 |
+
"""Implement the scaled dot product attention with softmax.
|
58 |
+
Arguments
|
59 |
+
---------
|
60 |
+
softmax_scale: The temperature to use for the softmax attention.
|
61 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
62 |
+
runtime)
|
63 |
+
attention_dropout: The dropout rate to apply to the attention
|
64 |
+
(default: 0.0)
|
65 |
+
"""
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
causal=False,
|
70 |
+
softmax_scale=None,
|
71 |
+
attention_dropout=0.0,
|
72 |
+
window_size=(-1, -1),
|
73 |
+
alibi_slopes=None,
|
74 |
+
deterministic=False,
|
75 |
+
):
|
76 |
+
super().__init__()
|
77 |
+
assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
|
78 |
+
assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
|
79 |
+
self.causal = causal
|
80 |
+
self.softmax_scale = softmax_scale
|
81 |
+
self.drop = nn.Dropout(attention_dropout)
|
82 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
83 |
+
self.window_size = window_size
|
84 |
+
self.deterministic = deterministic
|
85 |
+
|
86 |
+
def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
|
87 |
+
"""Implements the multihead softmax attention.
|
88 |
+
Arguments
|
89 |
+
---------
|
90 |
+
qkv: The tensor containing the query, key, and value.
|
91 |
+
If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
|
92 |
+
If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
|
93 |
+
(total, 3, H, D), where total is the sum of the sequence lengths in the batch.
|
94 |
+
causal: if passed, will override self.causal
|
95 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
96 |
+
of the sequences in the batch, used to index into qkv.
|
97 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
98 |
+
Returns:
|
99 |
+
--------
|
100 |
+
out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
|
101 |
+
else (B, S, H, D).
|
102 |
+
"""
|
103 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
104 |
+
assert qkv.is_cuda
|
105 |
+
causal = self.causal if causal is None else causal
|
106 |
+
unpadded = cu_seqlens is not None
|
107 |
+
if self.alibi_slopes is not None:
|
108 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
109 |
+
if unpadded:
|
110 |
+
assert cu_seqlens.dtype == torch.int32
|
111 |
+
assert max_seqlen is not None
|
112 |
+
assert isinstance(max_seqlen, int)
|
113 |
+
return flash_attn_varlen_qkvpacked_func(
|
114 |
+
qkv,
|
115 |
+
cu_seqlens,
|
116 |
+
max_seqlen,
|
117 |
+
self.drop.p if self.training else 0.0,
|
118 |
+
softmax_scale=self.softmax_scale,
|
119 |
+
causal=causal,
|
120 |
+
alibi_slopes=self.alibi_slopes,
|
121 |
+
window_size=self.window_size,
|
122 |
+
deterministic=self.deterministic,
|
123 |
+
)
|
124 |
+
else:
|
125 |
+
return flash_attn_qkvpacked_func(
|
126 |
+
qkv,
|
127 |
+
self.drop.p if self.training else 0.0,
|
128 |
+
softmax_scale=self.softmax_scale,
|
129 |
+
causal=causal,
|
130 |
+
alibi_slopes=self.alibi_slopes,
|
131 |
+
window_size=self.window_size,
|
132 |
+
deterministic=self.deterministic,
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
class FlashCrossAttention(nn.Module):
|
137 |
+
"""Implement the scaled dot product attention with softmax.
|
138 |
+
Arguments
|
139 |
+
---------
|
140 |
+
softmax_scale: The temperature to use for the softmax attention.
|
141 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
142 |
+
runtime)
|
143 |
+
attention_dropout: The dropout rate to apply to the attention
|
144 |
+
(default: 0.0)
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
causal=False,
|
150 |
+
softmax_scale=None,
|
151 |
+
attention_dropout=0.0,
|
152 |
+
alibi_slopes=None,
|
153 |
+
window_size=(-1, -1),
|
154 |
+
deterministic=False,
|
155 |
+
):
|
156 |
+
super().__init__()
|
157 |
+
assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
|
158 |
+
assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
|
159 |
+
self.causal = causal
|
160 |
+
self.softmax_scale = softmax_scale
|
161 |
+
self.drop = nn.Dropout(attention_dropout)
|
162 |
+
self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
|
163 |
+
self.window_size = window_size
|
164 |
+
self.deterministic = deterministic
|
165 |
+
|
166 |
+
def forward(
|
167 |
+
self,
|
168 |
+
q,
|
169 |
+
kv,
|
170 |
+
causal=None,
|
171 |
+
cu_seqlens=None,
|
172 |
+
max_seqlen=None,
|
173 |
+
cu_seqlens_k=None,
|
174 |
+
max_seqlen_k=None,
|
175 |
+
):
|
176 |
+
"""Implements the multihead softmax attention.
|
177 |
+
Arguments
|
178 |
+
---------
|
179 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
180 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
181 |
+
causal: if passed, will override self.causal
|
182 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
183 |
+
of the sequences in the batch, used to index into q.
|
184 |
+
max_seqlen: int. Maximum sequence length in the batch of q.
|
185 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
186 |
+
of the sequences in the batch, used to index into kv.
|
187 |
+
max_seqlen_k: int. Maximum sequence length in the batch of k and v.
|
188 |
+
"""
|
189 |
+
assert q.dtype in [torch.float16, torch.bfloat16]
|
190 |
+
assert q.is_cuda and kv.is_cuda
|
191 |
+
causal = self.causal if causal is None else causal
|
192 |
+
unpadded = cu_seqlens is not None
|
193 |
+
if self.alibi_slopes is not None:
|
194 |
+
self.alibi_slopes = self.alibi_slopes.to(torch.float32)
|
195 |
+
if unpadded:
|
196 |
+
assert cu_seqlens.dtype == torch.int32
|
197 |
+
assert max_seqlen is not None
|
198 |
+
assert isinstance(max_seqlen, int)
|
199 |
+
assert cu_seqlens_k is not None
|
200 |
+
assert cu_seqlens_k.dtype == torch.int32
|
201 |
+
assert max_seqlen_k is not None
|
202 |
+
assert isinstance(max_seqlen, int)
|
203 |
+
return flash_attn_varlen_kvpacked_func(
|
204 |
+
q,
|
205 |
+
kv,
|
206 |
+
cu_seqlens,
|
207 |
+
cu_seqlens_k,
|
208 |
+
max_seqlen,
|
209 |
+
max_seqlen_k,
|
210 |
+
self.drop.p if self.training else 0.0,
|
211 |
+
softmax_scale=self.softmax_scale,
|
212 |
+
causal=causal,
|
213 |
+
alibi_slopes=self.alibi_slopes,
|
214 |
+
window_size=self.window_size,
|
215 |
+
deterministic=self.deterministic,
|
216 |
+
)
|
217 |
+
else:
|
218 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
219 |
+
seqlen_k = kv.shape[1]
|
220 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
221 |
+
return flash_attn_kvpacked_func(
|
222 |
+
q,
|
223 |
+
kv,
|
224 |
+
self.drop.p if self.training else 0.0,
|
225 |
+
causal=causal,
|
226 |
+
softmax_scale=self.softmax_scale,
|
227 |
+
alibi_slopes=self.alibi_slopes,
|
228 |
+
window_size=self.window_size,
|
229 |
+
deterministic=self.deterministic,
|
230 |
+
)
|
231 |
+
|
232 |
+
|
233 |
+
class SelfAttention(nn.Module):
|
234 |
+
"""Implement the scaled dot product attention with softmax.
|
235 |
+
Arguments
|
236 |
+
---------
|
237 |
+
softmax_scale: The temperature to use for the softmax attention.
|
238 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
239 |
+
runtime)
|
240 |
+
attention_dropout: The dropout rate to apply to the attention
|
241 |
+
(default: 0.0)
|
242 |
+
"""
|
243 |
+
|
244 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
245 |
+
super().__init__()
|
246 |
+
self.causal = causal
|
247 |
+
self.softmax_scale = softmax_scale
|
248 |
+
self.drop = nn.Dropout(attention_dropout)
|
249 |
+
|
250 |
+
def forward(self, qkv, causal=None, key_padding_mask=None):
|
251 |
+
"""Implements the multihead softmax attention.
|
252 |
+
Arguments
|
253 |
+
---------
|
254 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
255 |
+
causal: if passed, will override self.causal
|
256 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
257 |
+
False means to mask out. (B, S)
|
258 |
+
"""
|
259 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
260 |
+
causal = self.causal if causal is None else causal
|
261 |
+
q, k, v = qkv.unbind(dim=2)
|
262 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
263 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
264 |
+
if key_padding_mask is not None:
|
265 |
+
padding_mask = torch.full(
|
266 |
+
(batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
|
267 |
+
)
|
268 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
269 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
270 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
271 |
+
if causal:
|
272 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
273 |
+
# So we have to construct the mask in float
|
274 |
+
causal_mask = torch.triu(
|
275 |
+
torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
|
276 |
+
)
|
277 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
278 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
279 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
280 |
+
attention_drop = self.drop(attention)
|
281 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
282 |
+
return output
|
283 |
+
|
284 |
+
|
285 |
+
class CrossAttention(nn.Module):
|
286 |
+
"""Implement the scaled dot product attention with softmax.
|
287 |
+
Arguments
|
288 |
+
---------
|
289 |
+
softmax_scale: The temperature to use for the softmax attention.
|
290 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
291 |
+
runtime)
|
292 |
+
attention_dropout: The dropout rate to apply to the attention
|
293 |
+
(default: 0.0)
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
297 |
+
super().__init__()
|
298 |
+
self.causal = causal
|
299 |
+
self.softmax_scale = softmax_scale
|
300 |
+
self.drop = nn.Dropout(attention_dropout)
|
301 |
+
|
302 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
303 |
+
"""Implements the multihead softmax attention.
|
304 |
+
Arguments
|
305 |
+
---------
|
306 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
307 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
|
308 |
+
causal: if passed, will override self.causal
|
309 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
310 |
+
False means to mask out. (B, Sk)
|
311 |
+
"""
|
312 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
313 |
+
causal = self.causal if causal is None else causal
|
314 |
+
seqlen_k = kv.shape[1]
|
315 |
+
assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
|
316 |
+
if kv.shape[3] != q.shape[2]: # MQA/GQA
|
317 |
+
kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
|
318 |
+
k, v = kv.unbind(dim=2)
|
319 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
320 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
|
321 |
+
if key_padding_mask is not None:
|
322 |
+
padding_mask = torch.full(
|
323 |
+
(batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
|
324 |
+
)
|
325 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
326 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
327 |
+
scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
|
328 |
+
if causal:
|
329 |
+
# causal mask needs to take into account the difference between seqlen_q and seqlen_k
|
330 |
+
row_idx = rearrange(
|
331 |
+
torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
|
332 |
+
)
|
333 |
+
col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
|
334 |
+
sk = (
|
335 |
+
seqlen_k
|
336 |
+
if key_padding_mask is None
|
337 |
+
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
338 |
+
)
|
339 |
+
causal_mask = col_idx > row_idx + sk - seqlen_q
|
340 |
+
scores = scores.masked_fill(causal_mask, -10000.0)
|
341 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
342 |
+
attention_drop = self.drop(attention)
|
343 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
|
344 |
+
return output
|
345 |
+
|
346 |
+
|
347 |
+
class LinearResidual(nn.Linear):
|
348 |
+
"""Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
|
349 |
+
|
350 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
351 |
+
return super().forward(input), input
|
352 |
+
|
353 |
+
|
354 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
355 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
356 |
+
# Pre-allocate memory for key-values for inference.
|
357 |
+
num_heads, head_dim = kv.shape[-2:]
|
358 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
359 |
+
kv_cache = torch.empty(
|
360 |
+
inference_params.max_batch_size,
|
361 |
+
inference_params.max_seqlen,
|
362 |
+
2,
|
363 |
+
num_heads,
|
364 |
+
head_dim,
|
365 |
+
dtype=kv.dtype,
|
366 |
+
device=kv.device,
|
367 |
+
)
|
368 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
369 |
+
else:
|
370 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
371 |
+
# Adjust key and value for inference
|
372 |
+
batch_start = inference_params.batch_size_offset
|
373 |
+
batch_end = batch_start + kv.shape[0]
|
374 |
+
sequence_start = inference_params.seqlen_offset
|
375 |
+
sequence_end = sequence_start + kv.shape[1]
|
376 |
+
assert batch_end <= kv_cache.shape[0]
|
377 |
+
assert sequence_end <= kv_cache.shape[1]
|
378 |
+
assert kv_cache is not None
|
379 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
380 |
+
return kv_cache[batch_start:batch_end, :sequence_end, ...]
|
381 |
+
|
382 |
+
|
383 |
+
class MHA(nn.Module):
|
384 |
+
"""Multi-head self-attention and cross-attention"""
|
385 |
+
|
386 |
+
def __init__(
|
387 |
+
self,
|
388 |
+
embed_dim,
|
389 |
+
num_heads,
|
390 |
+
num_heads_kv=None,
|
391 |
+
cross_attn=False,
|
392 |
+
qkv_proj_bias=True,
|
393 |
+
out_proj_bias=True,
|
394 |
+
dropout=0.0,
|
395 |
+
softmax_scale=None,
|
396 |
+
causal=False,
|
397 |
+
layer_idx=None,
|
398 |
+
dwconv=False,
|
399 |
+
rotary_emb_dim=0,
|
400 |
+
rotary_emb_base=10000.0,
|
401 |
+
rotary_emb_scale_base=None,
|
402 |
+
rotary_emb_interleaved=False,
|
403 |
+
use_alibi=False,
|
404 |
+
window_size=(-1, -1),
|
405 |
+
fused_bias_fc=False,
|
406 |
+
use_flash_attn=False,
|
407 |
+
return_residual=False,
|
408 |
+
checkpointing=False,
|
409 |
+
device=None,
|
410 |
+
dtype=None,
|
411 |
+
) -> None:
|
412 |
+
"""
|
413 |
+
num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
|
414 |
+
return_residual: whether to return the input x along with the output. This is for
|
415 |
+
performance reason: for post-norm architecture, returning the input allows us
|
416 |
+
to fuse the backward of nn.Linear with the residual connection.
|
417 |
+
"""
|
418 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
419 |
+
super().__init__()
|
420 |
+
self.embed_dim = embed_dim
|
421 |
+
self.cross_attn = cross_attn
|
422 |
+
self.causal = causal
|
423 |
+
self.layer_idx = layer_idx
|
424 |
+
self.dwconv = dwconv
|
425 |
+
self.rotary_emb_dim = rotary_emb_dim
|
426 |
+
self.use_flash_attn = use_flash_attn
|
427 |
+
self.return_residual = return_residual
|
428 |
+
self.checkpointing = checkpointing
|
429 |
+
if use_alibi:
|
430 |
+
assert use_flash_attn, "ALiBi code path requires flash_attn"
|
431 |
+
alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
|
432 |
+
else:
|
433 |
+
alibi_slopes = None
|
434 |
+
if window_size != (-1, -1):
|
435 |
+
assert use_flash_attn, "Local (sliding window) attention code path requires flash_attn"
|
436 |
+
|
437 |
+
self.num_heads = num_heads
|
438 |
+
self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
|
439 |
+
assert (
|
440 |
+
self.num_heads % self.num_heads_kv == 0
|
441 |
+
), "num_heads must be divisible by num_heads_kv"
|
442 |
+
assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
|
443 |
+
self.head_dim = self.embed_dim // num_heads
|
444 |
+
qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
|
445 |
+
kv_dim = 2 * self.head_dim * self.num_heads_kv
|
446 |
+
|
447 |
+
if self.rotary_emb_dim > 0:
|
448 |
+
assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
|
449 |
+
assert RotaryEmbedding is not None, "rotary_emb is not installed"
|
450 |
+
self.rotary_emb = RotaryEmbedding(
|
451 |
+
self.rotary_emb_dim,
|
452 |
+
base=rotary_emb_base,
|
453 |
+
scale_base=rotary_emb_scale_base,
|
454 |
+
interleaved=rotary_emb_interleaved,
|
455 |
+
device=device,
|
456 |
+
)
|
457 |
+
|
458 |
+
if fused_bias_fc and FusedDense is None:
|
459 |
+
raise ImportError("fused_dense is not installed")
|
460 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
461 |
+
linear_resid_cls = (
|
462 |
+
LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
|
463 |
+
)
|
464 |
+
wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
|
465 |
+
inner_attn_cls = (
|
466 |
+
partial(FlashSelfAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
467 |
+
if use_flash_attn
|
468 |
+
else SelfAttention
|
469 |
+
)
|
470 |
+
inner_cross_attn_cls = (
|
471 |
+
partial(FlashCrossAttention, alibi_slopes=alibi_slopes, window_size=window_size)
|
472 |
+
if use_flash_attn
|
473 |
+
else CrossAttention
|
474 |
+
)
|
475 |
+
if not self.cross_attn:
|
476 |
+
self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
|
477 |
+
else:
|
478 |
+
self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
|
479 |
+
self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
|
480 |
+
if self.dwconv:
|
481 |
+
if self.num_heads_kv == self.num_heads:
|
482 |
+
self.dwconv_qkv = nn.Conv1d(
|
483 |
+
qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
|
484 |
+
)
|
485 |
+
else:
|
486 |
+
self.dwconv_q = nn.Conv1d(
|
487 |
+
embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
|
488 |
+
)
|
489 |
+
self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
|
490 |
+
self.inner_attn = inner_attn_cls(
|
491 |
+
causal=causal,
|
492 |
+
softmax_scale=softmax_scale,
|
493 |
+
attention_dropout=dropout,
|
494 |
+
)
|
495 |
+
self.inner_cross_attn = inner_cross_attn_cls(
|
496 |
+
causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
|
497 |
+
)
|
498 |
+
self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
|
499 |
+
|
500 |
+
def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
|
501 |
+
dtype = self.out_proj.weight.dtype if dtype is None else dtype
|
502 |
+
device = self.out_proj.weight.device
|
503 |
+
return torch.empty(
|
504 |
+
batch_size,
|
505 |
+
max_seqlen,
|
506 |
+
2,
|
507 |
+
self.num_heads_kv,
|
508 |
+
self.head_dim,
|
509 |
+
dtype=dtype,
|
510 |
+
device=device,
|
511 |
+
)
|
512 |
+
|
513 |
+
def _update_kv_cache(self, kv, inference_params):
|
514 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
|
515 |
+
assert not self.dwconv, "Generation does not support dwconv yet"
|
516 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
517 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
518 |
+
|
519 |
+
def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
|
520 |
+
"""
|
521 |
+
Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
|
522 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
523 |
+
kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
|
524 |
+
"""
|
525 |
+
assert inference_params is not None and inference_params.seqlen_offset > 0
|
526 |
+
assert self.use_flash_attn
|
527 |
+
if self.rotary_emb_dim > 0:
|
528 |
+
assert self.rotary_emb.scale is None, "This code path does not support xPos"
|
529 |
+
self.rotary_emb._update_cos_sin_cache(
|
530 |
+
inference_params.max_seqlen, device=q.device, dtype=q.dtype
|
531 |
+
)
|
532 |
+
rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
|
533 |
+
else:
|
534 |
+
rotary_cos, rotary_sin = None, None
|
535 |
+
batch = q.shape[0]
|
536 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
537 |
+
cache_seqlens = (
|
538 |
+
inference_params.lengths_per_sample[:batch]
|
539 |
+
if inference_params.lengths_per_sample is not None
|
540 |
+
else inference_params.seqlen_offset
|
541 |
+
)
|
542 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
543 |
+
context = flash_attn_with_kvcache(
|
544 |
+
q,
|
545 |
+
kv_cache[:, :, 0],
|
546 |
+
kv_cache[:, :, 1],
|
547 |
+
kv[:, :, 0],
|
548 |
+
kv[:, :, 1],
|
549 |
+
rotary_cos=rotary_cos,
|
550 |
+
rotary_sin=rotary_sin,
|
551 |
+
cache_seqlens=cache_seqlens,
|
552 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
553 |
+
causal=self.inner_cross_attn.causal,
|
554 |
+
rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
|
555 |
+
alibi_slopes=alibi_slopes,
|
556 |
+
)
|
557 |
+
return context
|
558 |
+
|
559 |
+
def _update_kvcache_attention(self, q, kv, inference_params):
|
560 |
+
"""Write kv to inference_params, then do attention"""
|
561 |
+
if (
|
562 |
+
inference_params.seqlen_offset == 0
|
563 |
+
or flash_attn_with_kvcache is None
|
564 |
+
or not self.use_flash_attn
|
565 |
+
):
|
566 |
+
# TODO: this only uses seqlen_offset and not lengths_per_sample.
|
567 |
+
kv = self._update_kv_cache(kv, inference_params)
|
568 |
+
return self.inner_cross_attn(q, kv)
|
569 |
+
else:
|
570 |
+
batch = q.shape[0]
|
571 |
+
kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
|
572 |
+
cache_seqlens = (
|
573 |
+
inference_params.lengths_per_sample[:batch]
|
574 |
+
if inference_params.lengths_per_sample is not None
|
575 |
+
else inference_params.seqlen_offset
|
576 |
+
)
|
577 |
+
alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
|
578 |
+
return flash_attn_with_kvcache(
|
579 |
+
q,
|
580 |
+
kv_cache[:, :, 0],
|
581 |
+
kv_cache[:, :, 1],
|
582 |
+
kv[:, :, 0],
|
583 |
+
kv[:, :, 1],
|
584 |
+
cache_seqlens=cache_seqlens,
|
585 |
+
softmax_scale=self.inner_cross_attn.softmax_scale,
|
586 |
+
causal=self.inner_cross_attn.causal,
|
587 |
+
alibi_slopes=alibi_slopes,
|
588 |
+
)
|
589 |
+
|
590 |
+
def forward(
|
591 |
+
self,
|
592 |
+
x,
|
593 |
+
x_kv=None,
|
594 |
+
key_padding_mask=None,
|
595 |
+
cu_seqlens=None,
|
596 |
+
max_seqlen=None,
|
597 |
+
mixer_subset=None,
|
598 |
+
inference_params=None,
|
599 |
+
**kwargs,
|
600 |
+
):
|
601 |
+
"""
|
602 |
+
Arguments:
|
603 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
604 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
605 |
+
is the is the sum of the sequence lengths in the batch.
|
606 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
607 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
608 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
609 |
+
FlashAttention.
|
610 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
611 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
612 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
613 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
614 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
615 |
+
about the CLS token in the last layer.
|
616 |
+
inference_params: for generation. Adapted from Megatron-LM (and Apex)
|
617 |
+
https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
|
618 |
+
"""
|
619 |
+
if cu_seqlens is not None:
|
620 |
+
assert max_seqlen is not None
|
621 |
+
assert key_padding_mask is None
|
622 |
+
assert self.use_flash_attn
|
623 |
+
assert not self.dwconv
|
624 |
+
assert self.rotary_emb_dim == 0
|
625 |
+
if key_padding_mask is not None:
|
626 |
+
assert cu_seqlens is None
|
627 |
+
assert max_seqlen is None
|
628 |
+
assert not self.use_flash_attn
|
629 |
+
if inference_params is not None:
|
630 |
+
assert key_padding_mask is None
|
631 |
+
assert cu_seqlens is None and max_seqlen is None
|
632 |
+
assert not self.dwconv
|
633 |
+
|
634 |
+
kwargs = (
|
635 |
+
{"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
|
636 |
+
if self.use_flash_attn
|
637 |
+
else {"key_padding_mask": key_padding_mask, **kwargs}
|
638 |
+
)
|
639 |
+
seqlen_offset = (
|
640 |
+
0
|
641 |
+
if inference_params is None
|
642 |
+
else (
|
643 |
+
inference_params.lengths_per_sample
|
644 |
+
if inference_params.lengths_per_sample is not None
|
645 |
+
else inference_params.seqlen_offset
|
646 |
+
)
|
647 |
+
)
|
648 |
+
rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
|
649 |
+
batch, seqlen = x.shape[:2]
|
650 |
+
if not self.cross_attn and self.num_heads_kv == self.num_heads:
|
651 |
+
assert x_kv is None and mixer_subset is None
|
652 |
+
if not self.return_residual:
|
653 |
+
qkv = self.Wqkv(x)
|
654 |
+
else:
|
655 |
+
qkv, x = self.Wqkv(x)
|
656 |
+
if self.dwconv:
|
657 |
+
qkv = rearrange(
|
658 |
+
self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
659 |
+
).contiguous()
|
660 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
661 |
+
if (
|
662 |
+
inference_params is None
|
663 |
+
or inference_params.seqlen_offset == 0
|
664 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
665 |
+
or not self.use_flash_attn
|
666 |
+
):
|
667 |
+
if self.rotary_emb_dim > 0:
|
668 |
+
qkv = self.rotary_emb(
|
669 |
+
qkv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
670 |
+
)
|
671 |
+
if inference_params is None:
|
672 |
+
if not self.checkpointing:
|
673 |
+
context = self.inner_attn(qkv, **kwargs)
|
674 |
+
else:
|
675 |
+
context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
|
676 |
+
else:
|
677 |
+
context = self._update_kvcache_attention(
|
678 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
679 |
+
)
|
680 |
+
else:
|
681 |
+
context = self._apply_rotary_update_kvcache_attention(
|
682 |
+
qkv[:, :, 0], qkv[:, :, 1:], inference_params
|
683 |
+
)
|
684 |
+
else:
|
685 |
+
if self.cross_attn:
|
686 |
+
if not self.return_residual:
|
687 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
688 |
+
kv = self.Wkv(x_kv if x_kv is not None else x)
|
689 |
+
else:
|
690 |
+
if x_kv is not None:
|
691 |
+
kv, x_kv = self.Wkv(x_kv)
|
692 |
+
else:
|
693 |
+
kv, x = self.Wkv(x)
|
694 |
+
q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
|
695 |
+
else:
|
696 |
+
assert self.num_heads_kv != self.num_heads
|
697 |
+
if not self.return_residual:
|
698 |
+
qkv = self.Wqkv(x)
|
699 |
+
else:
|
700 |
+
qkv, x = self.Wqkv(x)
|
701 |
+
q = qkv[..., : self.num_heads * self.head_dim]
|
702 |
+
kv = qkv[..., self.num_heads * self.head_dim :]
|
703 |
+
q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
|
704 |
+
kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
|
705 |
+
if self.dwconv:
|
706 |
+
q = rearrange(
|
707 |
+
self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
708 |
+
).contiguous()
|
709 |
+
kv = rearrange(
|
710 |
+
self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
|
711 |
+
).contiguous()
|
712 |
+
if (
|
713 |
+
inference_params is None
|
714 |
+
or inference_params.seqlen_offset == 0
|
715 |
+
or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
|
716 |
+
or not self.use_flash_attn
|
717 |
+
):
|
718 |
+
if self.rotary_emb_dim > 0:
|
719 |
+
q, kv = self.rotary_emb(
|
720 |
+
q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
|
721 |
+
)
|
722 |
+
if inference_params is None:
|
723 |
+
if not self.checkpointing:
|
724 |
+
context = self.inner_cross_attn(q, kv, **kwargs)
|
725 |
+
else:
|
726 |
+
context = torch.utils.checkpoint.checkpoint(
|
727 |
+
self.inner_cross_attn, q, kv, **kwargs
|
728 |
+
)
|
729 |
+
else:
|
730 |
+
context = self._update_kvcache_attention(q, kv, inference_params)
|
731 |
+
else:
|
732 |
+
context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
|
733 |
+
out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
|
734 |
+
return out if not self.return_residual else (out, x)
|
735 |
+
|
mlp.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adapted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mlp.py
|
2 |
+
# Commit id: c3b219665292c61a51153d0ded4473c494296382
|
3 |
+
|
4 |
+
# Copyright (c) 2023, Tri Dao.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.distributed import ProcessGroup
|
10 |
+
|
11 |
+
|
12 |
+
try:
|
13 |
+
from flash_attn.ops.activations import swiglu
|
14 |
+
except ImportError:
|
15 |
+
swiglu = None
|
16 |
+
|
17 |
+
try:
|
18 |
+
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
19 |
+
except ImportError:
|
20 |
+
ColumnParallelLinear, RowParallelLinear = None, None
|
21 |
+
|
22 |
+
try:
|
23 |
+
from flash_attn.ops.fused_dense import FusedMLP, ParallelFusedMLP
|
24 |
+
except ImportError:
|
25 |
+
FusedMLP, ParallelFusedMLP = None, None
|
26 |
+
|
27 |
+
|
28 |
+
class Mlp(nn.Module):
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
in_features,
|
32 |
+
hidden_features=None,
|
33 |
+
out_features=None,
|
34 |
+
activation=F.gelu,
|
35 |
+
bias1=True,
|
36 |
+
bias2=True,
|
37 |
+
return_residual=False,
|
38 |
+
device=None,
|
39 |
+
dtype=None,
|
40 |
+
):
|
41 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
42 |
+
super().__init__()
|
43 |
+
out_features = out_features if out_features is not None else in_features
|
44 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
45 |
+
self.return_residual = return_residual
|
46 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
|
47 |
+
self.activation = activation
|
48 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
y = self.fc1(x)
|
52 |
+
y = self.activation(y)
|
53 |
+
y = self.fc2(y)
|
54 |
+
return y if not self.return_residual else (y, x)
|
55 |
+
|
56 |
+
|
57 |
+
class ParallelMLP(nn.Module):
|
58 |
+
def __init__(
|
59 |
+
self,
|
60 |
+
in_features,
|
61 |
+
hidden_features=None,
|
62 |
+
out_features=None,
|
63 |
+
activation=F.gelu,
|
64 |
+
process_group: ProcessGroup = None,
|
65 |
+
sequence_parallel=True,
|
66 |
+
bias1=True,
|
67 |
+
bias2=True,
|
68 |
+
device=None,
|
69 |
+
dtype=None,
|
70 |
+
):
|
71 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
72 |
+
super().__init__()
|
73 |
+
assert ColumnParallelLinear is not None, "Need to install fused_dense"
|
74 |
+
assert RowParallelLinear is not None, "Need to install fused_dense"
|
75 |
+
out_features = out_features if out_features is not None else in_features
|
76 |
+
hidden_features = hidden_features if hidden_features is not None else in_features * 4
|
77 |
+
self.fc1 = ColumnParallelLinear(
|
78 |
+
in_features,
|
79 |
+
hidden_features,
|
80 |
+
process_group,
|
81 |
+
bias=bias1,
|
82 |
+
sequence_parallel=sequence_parallel,
|
83 |
+
**factory_kwargs,
|
84 |
+
)
|
85 |
+
self.activation = activation
|
86 |
+
self.fc2 = RowParallelLinear(
|
87 |
+
hidden_features,
|
88 |
+
out_features,
|
89 |
+
process_group,
|
90 |
+
bias=bias2,
|
91 |
+
sequence_parallel=sequence_parallel,
|
92 |
+
**factory_kwargs,
|
93 |
+
)
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
y = self.fc1(x)
|
97 |
+
y = self.activation(y)
|
98 |
+
y = self.fc2(y)
|
99 |
+
return y
|
100 |
+
|
101 |
+
|
102 |
+
class GatedMlp(nn.Module):
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
in_features,
|
106 |
+
hidden_features=None,
|
107 |
+
out_features=None,
|
108 |
+
activation=F.sigmoid,
|
109 |
+
bias1=True,
|
110 |
+
bias2=True,
|
111 |
+
multiple_of=128,
|
112 |
+
return_residual=False,
|
113 |
+
device=None,
|
114 |
+
dtype=None,
|
115 |
+
):
|
116 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
117 |
+
super().__init__()
|
118 |
+
out_features = out_features if out_features is not None else in_features
|
119 |
+
hidden_features = (
|
120 |
+
hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
121 |
+
)
|
122 |
+
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
123 |
+
self.return_residual = return_residual
|
124 |
+
self.fc1 = nn.Linear(in_features, 2 * hidden_features, bias=bias1, **factory_kwargs)
|
125 |
+
self.activation = activation
|
126 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
y = self.fc1(x)
|
130 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
131 |
+
y = F.glu(y, dim=-1)
|
132 |
+
elif self.activation == F.silu and swiglu is not None: # Special case for SwiGLU
|
133 |
+
y, gate = y.chunk(2, dim=-1)
|
134 |
+
y = swiglu(gate, y)
|
135 |
+
else:
|
136 |
+
y, gate = y.chunk(2, dim=-1)
|
137 |
+
y = y * self.activation(gate)
|
138 |
+
y = self.fc2(y)
|
139 |
+
return y if not self.return_residual else (y, x)
|
140 |
+
|
141 |
+
|
142 |
+
class ParallelGatedMlp(nn.Module):
|
143 |
+
"""Parallel GatedMlp"""
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
in_features,
|
148 |
+
process_group,
|
149 |
+
hidden_features=None,
|
150 |
+
out_features=None,
|
151 |
+
activation=F.sigmoid,
|
152 |
+
bias1=True,
|
153 |
+
bias2=True,
|
154 |
+
multiple_of=128,
|
155 |
+
sequence_parallel=True,
|
156 |
+
device=None,
|
157 |
+
dtype=None,
|
158 |
+
):
|
159 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
160 |
+
super().__init__()
|
161 |
+
out_features = out_features if out_features is not None else in_features
|
162 |
+
hidden_features = (
|
163 |
+
hidden_features if hidden_features is not None else int(8 * in_features / 3)
|
164 |
+
)
|
165 |
+
hidden_features = (hidden_features + multiple_of - 1) // multiple_of * multiple_of
|
166 |
+
if ColumnParallelLinear is None or RowParallelLinear is None:
|
167 |
+
raise ImportError("fused_dense is not installed")
|
168 |
+
self.fc1 = ColumnParallelLinear(
|
169 |
+
in_features,
|
170 |
+
2 * hidden_features,
|
171 |
+
process_group,
|
172 |
+
bias=bias1,
|
173 |
+
sequence_parallel=sequence_parallel,
|
174 |
+
**factory_kwargs,
|
175 |
+
)
|
176 |
+
self.activation = activation
|
177 |
+
self.fc2 = RowParallelLinear(
|
178 |
+
hidden_features,
|
179 |
+
out_features,
|
180 |
+
process_group,
|
181 |
+
bias=bias2,
|
182 |
+
sequence_parallel=sequence_parallel,
|
183 |
+
**factory_kwargs,
|
184 |
+
)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
y = self.fc1(x)
|
188 |
+
if self.activation == F.sigmoid: # Special case for GLU
|
189 |
+
y = F.glu(y, dim=-1)
|
190 |
+
else:
|
191 |
+
y, gate = y.chunk(2, dim=-1)
|
192 |
+
y = y * self.activation(gate)
|
193 |
+
y = self.fc2(y)
|
194 |
+
return y
|
modeling_bert.py
ADDED
@@ -0,0 +1,784 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This implementation was adopted from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/models/bert.py
|
2 |
+
# Commit id: abbc1311731867310635f9edc2a9ec18317c8c48
|
3 |
+
|
4 |
+
# Copyright (c) 2022, Tri Dao.
|
5 |
+
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
|
6 |
+
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
|
7 |
+
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
|
8 |
+
|
9 |
+
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
|
10 |
+
|
11 |
+
import logging
|
12 |
+
import re
|
13 |
+
from collections import OrderedDict
|
14 |
+
from collections.abc import Sequence
|
15 |
+
from functools import partial
|
16 |
+
from typing import Any, Mapping
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
from einops import rearrange
|
22 |
+
from transformers import BertConfig, PretrainedConfig, XLMRobertaConfig # TODO check whether to use XLMRobertaConfig
|
23 |
+
from transformers.modeling_utils import PreTrainedModel
|
24 |
+
from transformers.models.bert.modeling_bert import (
|
25 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
26 |
+
BertForPreTrainingOutput,
|
27 |
+
)
|
28 |
+
|
29 |
+
from .bert_padding import (
|
30 |
+
index_first_axis,
|
31 |
+
index_first_axis_residual,
|
32 |
+
pad_input,
|
33 |
+
unpad_input,
|
34 |
+
)
|
35 |
+
from .block import Block
|
36 |
+
from .embedding import BertEmbeddings
|
37 |
+
from .mha import MHA
|
38 |
+
from .mlp import FusedMLP, Mlp
|
39 |
+
|
40 |
+
# from flash_attn.utils.pretrained import state_dict_from_pretrained
|
41 |
+
|
42 |
+
try:
|
43 |
+
from flash_attn.ops.fused_dense import FusedDense
|
44 |
+
except ImportError:
|
45 |
+
FusedDense = None
|
46 |
+
|
47 |
+
try:
|
48 |
+
from flash_attn.ops.triton.layer_norm import layer_norm_fn
|
49 |
+
except ImportError:
|
50 |
+
layer_norm_fn = None
|
51 |
+
|
52 |
+
|
53 |
+
try:
|
54 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
55 |
+
except ImportError:
|
56 |
+
CrossEntropyLoss = None
|
57 |
+
|
58 |
+
|
59 |
+
logger = logging.getLogger(__name__)
|
60 |
+
|
61 |
+
|
62 |
+
def create_mixer_cls(config, cross_attn=False, return_residual=False):
|
63 |
+
use_flash_attn = getattr(config, "use_flash_attn", False)
|
64 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
65 |
+
rotary_kwargs = {}
|
66 |
+
if config.position_embedding_type == "rotary":
|
67 |
+
rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size)
|
68 |
+
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
|
69 |
+
rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None)
|
70 |
+
rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False)
|
71 |
+
mixer_cls = partial(
|
72 |
+
MHA,
|
73 |
+
num_heads=config.num_attention_heads,
|
74 |
+
cross_attn=cross_attn,
|
75 |
+
dropout=config.attention_probs_dropout_prob,
|
76 |
+
causal=False,
|
77 |
+
fused_bias_fc=fused_bias_fc,
|
78 |
+
use_flash_attn=use_flash_attn,
|
79 |
+
return_residual=return_residual,
|
80 |
+
**rotary_kwargs,
|
81 |
+
)
|
82 |
+
return mixer_cls
|
83 |
+
|
84 |
+
|
85 |
+
def create_mlp_cls(config, layer_idx=None, return_residual=False):
|
86 |
+
inner_dim = config.intermediate_size
|
87 |
+
fused_mlp = getattr(config, "fused_mlp", False)
|
88 |
+
if fused_mlp:
|
89 |
+
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], (
|
90 |
+
"fused_mlp only " "supports approximate gelu"
|
91 |
+
)
|
92 |
+
if not fused_mlp:
|
93 |
+
approximate = (
|
94 |
+
"tanh"
|
95 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
96 |
+
else "none"
|
97 |
+
)
|
98 |
+
mlp_cls = partial(
|
99 |
+
Mlp,
|
100 |
+
hidden_features=inner_dim,
|
101 |
+
activation=partial(F.gelu, approximate=approximate),
|
102 |
+
return_residual=return_residual,
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
if FusedMLP is None:
|
106 |
+
raise ImportError("fused_dense is not installed")
|
107 |
+
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
|
108 |
+
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
|
109 |
+
if isinstance(mlp_checkpoint_lvl, Sequence):
|
110 |
+
assert layer_idx is not None
|
111 |
+
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
|
112 |
+
mlp_cls = partial(
|
113 |
+
FusedMLP,
|
114 |
+
hidden_features=inner_dim,
|
115 |
+
checkpoint_lvl=mlp_checkpoint_lvl,
|
116 |
+
return_residual=return_residual,
|
117 |
+
)
|
118 |
+
return mlp_cls
|
119 |
+
|
120 |
+
|
121 |
+
def create_block(config, layer_idx=None):
|
122 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
123 |
+
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
|
124 |
+
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the
|
125 |
+
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects
|
126 |
+
# one layer) so we just choose not to return residual in this case.
|
127 |
+
return_residual = not cross_attn
|
128 |
+
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
|
129 |
+
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
|
130 |
+
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
|
131 |
+
block = Block(
|
132 |
+
config.hidden_size,
|
133 |
+
mixer_cls,
|
134 |
+
mlp_cls,
|
135 |
+
norm_cls=norm_cls,
|
136 |
+
prenorm=False,
|
137 |
+
resid_dropout1=config.hidden_dropout_prob,
|
138 |
+
resid_dropout2=config.hidden_dropout_prob,
|
139 |
+
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
|
140 |
+
return_residual=return_residual,
|
141 |
+
)
|
142 |
+
return block
|
143 |
+
|
144 |
+
|
145 |
+
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
|
146 |
+
def _init_weights(module, initializer_range=0.02):
|
147 |
+
if isinstance(module, nn.Linear):
|
148 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
149 |
+
if module.bias is not None:
|
150 |
+
nn.init.zeros_(module.bias)
|
151 |
+
elif isinstance(module, nn.Embedding):
|
152 |
+
nn.init.normal_(module.weight, std=initializer_range)
|
153 |
+
if module.padding_idx is not None:
|
154 |
+
nn.init.zeros_(module.weight[module.padding_idx])
|
155 |
+
|
156 |
+
|
157 |
+
class BertEncoder(nn.Module):
|
158 |
+
def __init__(self, config: BertConfig):
|
159 |
+
super().__init__()
|
160 |
+
self.use_flash_attn = getattr(config, "use_flash_attn", False)
|
161 |
+
self.layers = nn.ModuleList(
|
162 |
+
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
163 |
+
)
|
164 |
+
|
165 |
+
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
|
166 |
+
"""If subset_mask is not None, we only want output for the subset of the sequence.
|
167 |
+
This means that we only compute the last layer output for these tokens.
|
168 |
+
subset_mask: (batch, seqlen), dtype=torch.bool
|
169 |
+
"""
|
170 |
+
if key_padding_mask is None or not self.use_flash_attn:
|
171 |
+
mixer_kwargs = (
|
172 |
+
{"key_padding_mask": key_padding_mask.bool()} if key_padding_mask is not None else None
|
173 |
+
)
|
174 |
+
for layer in self.layers:
|
175 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
176 |
+
if subset_mask is not None:
|
177 |
+
hidden_states = hidden_states[subset_mask]
|
178 |
+
else:
|
179 |
+
batch, seqlen = hidden_states.shape[:2]
|
180 |
+
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
|
181 |
+
hidden_states, key_padding_mask
|
182 |
+
)
|
183 |
+
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
|
184 |
+
if subset_mask is None:
|
185 |
+
for layer in self.layers:
|
186 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
187 |
+
hidden_states = pad_input(hidden_states, indices, batch, seqlen)
|
188 |
+
else:
|
189 |
+
for layer in self.layers[:-1]:
|
190 |
+
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
|
191 |
+
if key_padding_mask is not None:
|
192 |
+
subset_idx = torch.nonzero(
|
193 |
+
subset_mask[key_padding_mask], as_tuple=False
|
194 |
+
).flatten()
|
195 |
+
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
|
196 |
+
subset_cu_seqlens = F.pad(
|
197 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
|
201 |
+
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
|
202 |
+
subset_cu_seqlens = F.pad(
|
203 |
+
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
|
204 |
+
)
|
205 |
+
hidden_states_subset, hidden_states = index_first_axis_residual(
|
206 |
+
hidden_states, subset_idx
|
207 |
+
)
|
208 |
+
# It's ok to set max_seqlen_q to be much larger
|
209 |
+
mixer_kwargs = {
|
210 |
+
"x_kv": hidden_states,
|
211 |
+
"cu_seqlens": subset_cu_seqlens,
|
212 |
+
"max_seqlen": max_seqlen_in_batch,
|
213 |
+
"cu_seqlens_k": cu_seqlens,
|
214 |
+
"max_seqlen_k": max_seqlen_in_batch,
|
215 |
+
}
|
216 |
+
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
|
217 |
+
return hidden_states
|
218 |
+
|
219 |
+
|
220 |
+
class BertPooler(nn.Module):
|
221 |
+
def __init__(self, config):
|
222 |
+
super().__init__()
|
223 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
224 |
+
if fused_bias_fc and FusedDense is None:
|
225 |
+
raise ImportError("fused_dense is not installed")
|
226 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
227 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
228 |
+
self.activation = nn.Tanh()
|
229 |
+
|
230 |
+
def forward(self, hidden_states, pool=True):
|
231 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
232 |
+
# to the first token.
|
233 |
+
first_token_tensor = hidden_states[:, 0] if pool else hidden_states
|
234 |
+
pooled_output = self.dense(first_token_tensor)
|
235 |
+
pooled_output = self.activation(pooled_output)
|
236 |
+
return pooled_output
|
237 |
+
|
238 |
+
|
239 |
+
class BertPredictionHeadTransform(nn.Module):
|
240 |
+
def __init__(self, config):
|
241 |
+
super().__init__()
|
242 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
243 |
+
if fused_bias_fc and FusedDense is None:
|
244 |
+
raise ImportError("fused_dense is not installed")
|
245 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
246 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
247 |
+
raise ImportError("Triton is not installed")
|
248 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
249 |
+
self.dense = linear_cls(config.hidden_size, config.hidden_size)
|
250 |
+
approximate = (
|
251 |
+
"tanh"
|
252 |
+
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
253 |
+
else "none"
|
254 |
+
)
|
255 |
+
self.transform_act_fn = nn.GELU(approximate=approximate)
|
256 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
257 |
+
|
258 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
259 |
+
hidden_states = self.dense(hidden_states)
|
260 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
261 |
+
if not self.fused_dropout_add_ln:
|
262 |
+
hidden_states = self.layer_norm(hidden_states)
|
263 |
+
else:
|
264 |
+
hidden_states = layer_norm_fn(
|
265 |
+
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps
|
266 |
+
)
|
267 |
+
return hidden_states
|
268 |
+
|
269 |
+
|
270 |
+
class BertLMPredictionHead(nn.Module):
|
271 |
+
def __init__(self, config):
|
272 |
+
super().__init__()
|
273 |
+
fused_bias_fc = getattr(config, "fused_bias_fc", False)
|
274 |
+
if fused_bias_fc and FusedDense is None:
|
275 |
+
raise ImportError("fused_dense is not installed")
|
276 |
+
linear_cls = nn.Linear if not fused_bias_fc else FusedDense
|
277 |
+
|
278 |
+
self.transform = BertPredictionHeadTransform(config)
|
279 |
+
|
280 |
+
# The output weights are the same as the input embeddings, but there is
|
281 |
+
# an output-only bias for each token.
|
282 |
+
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
|
283 |
+
|
284 |
+
def forward(self, hidden_states):
|
285 |
+
hidden_states = self.transform(hidden_states)
|
286 |
+
hidden_states = self.decoder(hidden_states)
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class BertPreTrainingHeads(nn.Module):
|
291 |
+
def __init__(self, config):
|
292 |
+
super().__init__()
|
293 |
+
self.predictions = BertLMPredictionHead(config)
|
294 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
295 |
+
|
296 |
+
def forward(self, sequence_output, pooled_output):
|
297 |
+
prediction_scores = self.predictions(sequence_output)
|
298 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
299 |
+
return prediction_scores, seq_relationship_score
|
300 |
+
|
301 |
+
|
302 |
+
# class BertPreTrainedModel(nn.Module):
|
303 |
+
# """An abstract class to handle weights initialization and
|
304 |
+
# a simple interface for dowloading and loading pretrained models.
|
305 |
+
# """
|
306 |
+
#
|
307 |
+
# def __init__(self, config, *inputs, **kwargs):
|
308 |
+
# super().__init__()
|
309 |
+
# if not isinstance(config, BertConfig):
|
310 |
+
# raise ValueError(
|
311 |
+
# "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
|
312 |
+
# "To create a model from a Google pretrained model use "
|
313 |
+
# "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
314 |
+
# self.__class__.__name__, self.__class__.__name__
|
315 |
+
# )
|
316 |
+
# )
|
317 |
+
# self.config = config
|
318 |
+
#
|
319 |
+
# @classmethod
|
320 |
+
# def from_pretrained(cls, model_name, config, *inputs, **kwargs):
|
321 |
+
# """
|
322 |
+
# Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
323 |
+
# Download and cache the pre-trained model file if needed.
|
324 |
+
#
|
325 |
+
# Params:
|
326 |
+
# pretrained_model_name_or_path: either:
|
327 |
+
# - a path or url to a pretrained model archive containing:
|
328 |
+
# . `bert_config.json` a configuration file for the model
|
329 |
+
# . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
|
330 |
+
# - a path or url to a pretrained model archive containing:
|
331 |
+
# . `bert_config.json` a configuration file for the model
|
332 |
+
# . `model.chkpt` a TensorFlow checkpoint
|
333 |
+
# *inputs, **kwargs: additional input for the specific Bert class
|
334 |
+
# (ex: num_labels for BertForSequenceClassification)
|
335 |
+
# """
|
336 |
+
# # Instantiate model.
|
337 |
+
# model = cls(config, *inputs, **kwargs)
|
338 |
+
# load_return = model.load_state_dict(
|
339 |
+
# remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False
|
340 |
+
# )
|
341 |
+
# logger.info(load_return)
|
342 |
+
# return model
|
343 |
+
|
344 |
+
class BertPreTrainedModel(PreTrainedModel):
|
345 |
+
"""An abstract class to handle weights initialization and
|
346 |
+
a simple interface for dowloading and loading pretrained models.
|
347 |
+
"""
|
348 |
+
config_class = XLMRobertaConfig
|
349 |
+
base_model_prefix = "bert"
|
350 |
+
supports_gradient_checkpointing = True
|
351 |
+
|
352 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
353 |
+
if isinstance(module, BertEncoder):
|
354 |
+
module.gradient_checkpointing = value
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
class BertModel(BertPreTrainedModel):
|
359 |
+
def __init__(self, config: BertConfig, add_pooling_layer=True):
|
360 |
+
super().__init__(config)
|
361 |
+
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
362 |
+
if config.vocab_size % self.pad_vocab_size_multiple != 0:
|
363 |
+
config.vocab_size += self.pad_vocab_size_multiple - (
|
364 |
+
config.vocab_size % self.pad_vocab_size_multiple
|
365 |
+
)
|
366 |
+
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
|
367 |
+
if self.fused_dropout_add_ln and layer_norm_fn is None:
|
368 |
+
raise ImportError("Triton is not installed")
|
369 |
+
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"]
|
370 |
+
|
371 |
+
self.embeddings = BertEmbeddings(
|
372 |
+
config.hidden_size,
|
373 |
+
config.vocab_size,
|
374 |
+
config.max_position_embeddings,
|
375 |
+
config.type_vocab_size,
|
376 |
+
padding_idx=config.pad_token_id,
|
377 |
+
)
|
378 |
+
self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
|
379 |
+
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
380 |
+
self.encoder = BertEncoder(config)
|
381 |
+
self.pooler = BertPooler(config) if add_pooling_layer else None
|
382 |
+
|
383 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
384 |
+
|
385 |
+
def forward(
|
386 |
+
self,
|
387 |
+
input_ids,
|
388 |
+
position_ids=None,
|
389 |
+
token_type_ids=None,
|
390 |
+
attention_mask=None,
|
391 |
+
masked_tokens_mask=None,
|
392 |
+
):
|
393 |
+
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
|
394 |
+
we only want the output for the masked tokens. This means that we only compute the last
|
395 |
+
layer output for these tokens.
|
396 |
+
masked_tokens_mask: (batch, seqlen), dtype=torch.bool
|
397 |
+
"""
|
398 |
+
hidden_states = self.embeddings(
|
399 |
+
input_ids, position_ids=position_ids, token_type_ids=token_type_ids
|
400 |
+
)
|
401 |
+
# TD [2022-12:18]: Don't need to force residual in fp32
|
402 |
+
# BERT puts embedding LayerNorm before embedding dropout.
|
403 |
+
if not self.fused_dropout_add_ln:
|
404 |
+
hidden_states = self.emb_ln(hidden_states)
|
405 |
+
else:
|
406 |
+
hidden_states = layer_norm_fn(
|
407 |
+
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps
|
408 |
+
)
|
409 |
+
hidden_states = self.emb_drop(hidden_states)
|
410 |
+
|
411 |
+
if masked_tokens_mask is not None:
|
412 |
+
batch_size, seqlen = input_ids.shape[:2]
|
413 |
+
# We also need the first column for the CLS token
|
414 |
+
first_col_mask = torch.zeros(
|
415 |
+
batch_size, seqlen, dtype=torch.bool, device=input_ids.device
|
416 |
+
)
|
417 |
+
first_col_mask[:, 0] = True
|
418 |
+
subset_mask = masked_tokens_mask | first_col_mask
|
419 |
+
else:
|
420 |
+
subset_mask = None
|
421 |
+
|
422 |
+
sequence_output = self.encoder(
|
423 |
+
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
|
424 |
+
)
|
425 |
+
|
426 |
+
if masked_tokens_mask is None:
|
427 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
428 |
+
else:
|
429 |
+
# TD [2022-03-01]: the indexing here is very tricky.
|
430 |
+
if attention_mask is not None:
|
431 |
+
subset_idx = subset_mask[attention_mask]
|
432 |
+
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
|
433 |
+
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
|
434 |
+
else:
|
435 |
+
pool_input = sequence_output[first_col_mask[subset_mask]]
|
436 |
+
sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
|
437 |
+
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
|
438 |
+
|
439 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
440 |
+
last_hidden_state=sequence_output,
|
441 |
+
pooler_output=pooled_output,
|
442 |
+
)
|
443 |
+
|
444 |
+
|
445 |
+
class BertForPreTraining(BertPreTrainedModel):
|
446 |
+
def __init__(self, config: BertConfig):
|
447 |
+
import pdb
|
448 |
+
pdb.set_trace()
|
449 |
+
super().__init__(config)
|
450 |
+
# If dense_seq_output, we only need to pass the hidden states for the masked out tokens
|
451 |
+
# (around 15%) to the classifier heads.
|
452 |
+
self.dense_seq_output = getattr(config, "dense_seq_output", False)
|
453 |
+
# If last_layer_subset, we only need the compute the last layer for a subset of tokens
|
454 |
+
# (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
|
455 |
+
self.last_layer_subset = getattr(config, "last_layer_subset", False)
|
456 |
+
if self.last_layer_subset:
|
457 |
+
assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
|
458 |
+
use_xentropy = getattr(config, "use_xentropy", False)
|
459 |
+
if use_xentropy and CrossEntropyLoss is None:
|
460 |
+
raise ImportError("xentropy_cuda is not installed")
|
461 |
+
loss_cls = (
|
462 |
+
nn.CrossEntropyLoss
|
463 |
+
if not use_xentropy
|
464 |
+
else partial(CrossEntropyLoss, inplace_backward=True)
|
465 |
+
)
|
466 |
+
|
467 |
+
self.bert = BertModel(config)
|
468 |
+
self.cls = BertPreTrainingHeads(config)
|
469 |
+
self.mlm_loss = loss_cls(ignore_index=0)
|
470 |
+
self.nsp_loss = loss_cls(ignore_index=-1)
|
471 |
+
|
472 |
+
# Initialize weights and apply final processing
|
473 |
+
self.apply(partial(_init_weights, initializer_range=config.initializer_range))
|
474 |
+
self.tie_weights()
|
475 |
+
|
476 |
+
def tie_weights(self):
|
477 |
+
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
|
478 |
+
|
479 |
+
def forward(
|
480 |
+
self,
|
481 |
+
input_ids,
|
482 |
+
position_ids=None,
|
483 |
+
token_type_ids=None,
|
484 |
+
attention_mask=None,
|
485 |
+
labels=None,
|
486 |
+
next_sentence_label=None,
|
487 |
+
):
|
488 |
+
"""
|
489 |
+
If labels are provided, they must be 0 for masked out tokens (as specified in the attention
|
490 |
+
mask).
|
491 |
+
Outputs:
|
492 |
+
if `labels` and `next_sentence_label` are not `None`:
|
493 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
494 |
+
sentence classification loss.
|
495 |
+
if `labels` or `next_sentence_label` is `None`:
|
496 |
+
Outputs a tuple comprising
|
497 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
498 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
499 |
+
|
500 |
+
"""
|
501 |
+
masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
|
502 |
+
outputs = self.bert(
|
503 |
+
input_ids,
|
504 |
+
position_ids=position_ids,
|
505 |
+
token_type_ids=token_type_ids,
|
506 |
+
attention_mask=attention_mask.bool() if attention_mask is not None else None,
|
507 |
+
masked_tokens_mask=masked_tokens_mask,
|
508 |
+
)
|
509 |
+
sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
|
510 |
+
if self.dense_seq_output and labels is not None:
|
511 |
+
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
|
512 |
+
if not self.last_layer_subset:
|
513 |
+
sequence_output = index_first_axis(
|
514 |
+
rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
|
515 |
+
)
|
516 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
517 |
+
|
518 |
+
total_loss = None
|
519 |
+
if labels is not None and next_sentence_label is not None:
|
520 |
+
if (
|
521 |
+
self.dense_seq_output and labels is not None
|
522 |
+
): # prediction_scores are already flattened
|
523 |
+
masked_lm_loss = self.mlm_loss(
|
524 |
+
prediction_scores, labels.flatten()[masked_token_idx]
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
masked_lm_loss = self.mlm_loss(
|
528 |
+
rearrange(prediction_scores, "... v -> (...) v"),
|
529 |
+
rearrange(labels, "... -> (...)"),
|
530 |
+
)
|
531 |
+
next_sentence_loss = self.nsp_loss(
|
532 |
+
rearrange(seq_relationship_score, "... t -> (...) t"),
|
533 |
+
rearrange(next_sentence_label, "... -> (...)"),
|
534 |
+
)
|
535 |
+
total_loss = masked_lm_loss.float() + next_sentence_loss.float()
|
536 |
+
|
537 |
+
return BertForPreTrainingOutput(
|
538 |
+
loss=total_loss,
|
539 |
+
prediction_logits=prediction_scores,
|
540 |
+
seq_relationship_logits=seq_relationship_score,
|
541 |
+
)
|
542 |
+
|
543 |
+
|
544 |
+
def remap_state_dict(state_dict, config: PretrainedConfig):
|
545 |
+
"""
|
546 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
547 |
+
"""
|
548 |
+
|
549 |
+
# LayerNorm
|
550 |
+
def key_mapping_ln_gamma_beta(key):
|
551 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
552 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
553 |
+
return key
|
554 |
+
|
555 |
+
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
|
556 |
+
|
557 |
+
# Layers
|
558 |
+
def key_mapping_layers(key):
|
559 |
+
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
|
560 |
+
|
561 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
562 |
+
|
563 |
+
# LayerNorm
|
564 |
+
def key_mapping_ln(key):
|
565 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
566 |
+
key = re.sub(
|
567 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
568 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
569 |
+
key,
|
570 |
+
)
|
571 |
+
key = re.sub(
|
572 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
573 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
574 |
+
key,
|
575 |
+
)
|
576 |
+
key = re.sub(
|
577 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
578 |
+
r"cls.predictions.transform.layer_norm.\1",
|
579 |
+
key,
|
580 |
+
)
|
581 |
+
return key
|
582 |
+
|
583 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
584 |
+
|
585 |
+
# MLP
|
586 |
+
def key_mapping_mlp(key):
|
587 |
+
key = re.sub(
|
588 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
589 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
590 |
+
key,
|
591 |
+
)
|
592 |
+
key = re.sub(
|
593 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
594 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
595 |
+
key,
|
596 |
+
)
|
597 |
+
return key
|
598 |
+
|
599 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
600 |
+
|
601 |
+
# Attention
|
602 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
603 |
+
for d in range(config.num_hidden_layers):
|
604 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
605 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
606 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
607 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
608 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
609 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
610 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
611 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
|
612 |
+
[Wq, Wk, Wv], dim=0
|
613 |
+
)
|
614 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
|
615 |
+
else:
|
616 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
|
617 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
|
618 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
|
619 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0)
|
620 |
+
|
621 |
+
def key_mapping_attn(key):
|
622 |
+
return re.sub(
|
623 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
624 |
+
r"bert.encoder.layers.\1.mixer.out_proj.\2",
|
625 |
+
key,
|
626 |
+
)
|
627 |
+
|
628 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
629 |
+
|
630 |
+
def key_mapping_decoder_bias(key):
|
631 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
632 |
+
|
633 |
+
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
|
634 |
+
|
635 |
+
# Word embedding
|
636 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
637 |
+
if pad_vocab_size_multiple > 1:
|
638 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
639 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
640 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
641 |
+
)
|
642 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
643 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
644 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
645 |
+
)
|
646 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
647 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
648 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
649 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
650 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
651 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
652 |
+
)
|
653 |
+
|
654 |
+
return state_dict
|
655 |
+
|
656 |
+
|
657 |
+
def inv_remap_state_dict(state_dict, config: PretrainedConfig):
|
658 |
+
"""
|
659 |
+
Map the state_dict of a flash_attn model to be Huggingface BERT compatible.
|
660 |
+
|
661 |
+
This function is meant to be the inverse of remap_state_dict.
|
662 |
+
"""
|
663 |
+
# Word embedding
|
664 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
665 |
+
if pad_vocab_size_multiple > 1:
|
666 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
667 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
668 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
669 |
+
# unpad embeddings
|
670 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
|
671 |
+
: config.orig_vocab_size, :
|
672 |
+
]
|
673 |
+
state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :]
|
674 |
+
state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size]
|
675 |
+
|
676 |
+
for d in range(config.num_hidden_layers):
|
677 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
678 |
+
if not last_layer_subset or d != (config.num_hidden_layers - 1):
|
679 |
+
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
|
680 |
+
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
|
681 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[
|
682 |
+
: Wqkv_weights.shape[0] // 3, :
|
683 |
+
]
|
684 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[
|
685 |
+
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
|
686 |
+
]
|
687 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[
|
688 |
+
2 * Wqkv_weights.shape[0] // 3 :, :
|
689 |
+
]
|
690 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[
|
691 |
+
: Wqkv_biases.shape[0] // 3
|
692 |
+
]
|
693 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[
|
694 |
+
Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3
|
695 |
+
]
|
696 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[
|
697 |
+
2 * Wqkv_biases.shape[0] // 3 :
|
698 |
+
]
|
699 |
+
else:
|
700 |
+
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
|
701 |
+
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
|
702 |
+
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
|
703 |
+
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
|
704 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight
|
705 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[
|
706 |
+
: Wkv_weights.shape[0] // 2, :
|
707 |
+
]
|
708 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[
|
709 |
+
Wkv_weights.shape[0] // 2 :, :
|
710 |
+
]
|
711 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
|
712 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
|
713 |
+
: Wkv_biases.shape[0] // 2
|
714 |
+
]
|
715 |
+
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[
|
716 |
+
Wkv_biases.shape[0] // 2 :
|
717 |
+
]
|
718 |
+
|
719 |
+
def inv_key_mapping_ln(key):
|
720 |
+
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
|
721 |
+
key = re.sub(
|
722 |
+
r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
|
723 |
+
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
|
724 |
+
key,
|
725 |
+
)
|
726 |
+
key = re.sub(
|
727 |
+
r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
|
728 |
+
r"bert.encoder.layers.\1.output.LayerNorm.\2",
|
729 |
+
key,
|
730 |
+
)
|
731 |
+
key = re.sub(
|
732 |
+
r"cls.predictions.transform.layer_norm.(weight|bias)",
|
733 |
+
r"cls.predictions.transform.LayerNorm.\1",
|
734 |
+
key,
|
735 |
+
)
|
736 |
+
return key
|
737 |
+
|
738 |
+
def inv_key_mapping_ln_gamma_beta(key):
|
739 |
+
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
|
740 |
+
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
|
741 |
+
return key
|
742 |
+
|
743 |
+
def inv_key_mapping_layers(key):
|
744 |
+
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)
|
745 |
+
|
746 |
+
def inv_key_mapping_mlp(key):
|
747 |
+
key = re.sub(
|
748 |
+
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
|
749 |
+
r"bert.encoder.layer.\1.intermediate.dense.\2",
|
750 |
+
key,
|
751 |
+
)
|
752 |
+
key = re.sub(
|
753 |
+
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
|
754 |
+
r"bert.encoder.layer.\1.output.dense.\2",
|
755 |
+
key,
|
756 |
+
)
|
757 |
+
return key
|
758 |
+
|
759 |
+
def inv_key_mapping_attn(key):
|
760 |
+
return re.sub(
|
761 |
+
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
|
762 |
+
r"bert.encoder.layer.\1.attention.output.dense.\2",
|
763 |
+
key,
|
764 |
+
)
|
765 |
+
|
766 |
+
def inv_key_mapping_decoder_bias(key):
|
767 |
+
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)
|
768 |
+
|
769 |
+
state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items())
|
770 |
+
state_dict = OrderedDict(
|
771 |
+
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
|
772 |
+
)
|
773 |
+
state_dict = OrderedDict(
|
774 |
+
(inv_key_mapping_layers(key), value) for key, value in state_dict.items()
|
775 |
+
)
|
776 |
+
state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items())
|
777 |
+
state_dict = OrderedDict(
|
778 |
+
(inv_key_mapping_attn(key), value) for key, value in state_dict.items()
|
779 |
+
)
|
780 |
+
state_dict = OrderedDict(
|
781 |
+
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
|
782 |
+
)
|
783 |
+
|
784 |
+
return state_dict
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61bdee1ea6ae50618c387234ae94a500df9ce095e59d836b8aefef33e9d8884e
|
3 |
+
size 1112222546
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_max_length": 512}
|