jupyterjazz
commited on
Commit
·
a2b7c86
1
Parent(s):
c6a5a4d
refactor: restructure the class
Browse filesSigned-off-by: jupyterjazz <[email protected]>
- modeling_lora.py +6 -13
modeling_lora.py
CHANGED
@@ -12,7 +12,6 @@ from transformers import PretrainedConfig
|
|
12 |
from .modeling_xlm_roberta import (
|
13 |
XLMRobertaFlashConfig,
|
14 |
XLMRobertaModel,
|
15 |
-
XLMRobertaPreTrainedModel,
|
16 |
)
|
17 |
|
18 |
|
@@ -209,19 +208,13 @@ class LoRAParametrization(nn.Module):
|
|
209 |
layer.current_task = task_idx
|
210 |
|
211 |
|
212 |
-
class XLMRobertaLoRA(
|
213 |
def __init__(
|
214 |
self,
|
215 |
config: XLMRobertaFlashConfig,
|
216 |
-
roberta: Optional[XLMRobertaModel] = None,
|
217 |
):
|
218 |
super().__init__(config)
|
219 |
|
220 |
-
if roberta is None:
|
221 |
-
self.roberta = XLMRobertaModel(config)
|
222 |
-
else:
|
223 |
-
self.roberta = roberta
|
224 |
-
|
225 |
self._num_adaptations = len(config.lora_adaptations)
|
226 |
self._rank = config.lora_rank
|
227 |
self._dropout_p = config.lora_dropout_p
|
@@ -238,6 +231,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
238 |
# By default, we select the first LoRA
|
239 |
self.current_task = 0
|
240 |
|
|
|
241 |
@property
|
242 |
def main_params_trainable(self):
|
243 |
return self._main_params_trainable
|
@@ -273,15 +267,14 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
273 |
config = XLMRobertaFlashConfig.from_pretrained(
|
274 |
pretrained_model_name_or_path, *model_args, **kwargs
|
275 |
)
|
|
|
276 |
if config.load_trained_adapters:
|
277 |
return super().from_pretrained(
|
278 |
pretrained_model_name_or_path, *model_args, **kwargs
|
279 |
)
|
280 |
else:
|
281 |
-
|
282 |
-
|
283 |
-
)
|
284 |
-
return cls(config, roberta=roberta)
|
285 |
|
286 |
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
287 |
self.apply(
|
@@ -320,7 +313,7 @@ class XLMRobertaLoRA(XLMRobertaPreTrainedModel):
|
|
320 |
def forward(self, *args, lora_adaptation: Union[None, int] = -1, **kwargs):
|
321 |
if lora_adaptation is None or lora_adaptation >= 0:
|
322 |
self.current_task = lora_adaptation
|
323 |
-
return
|
324 |
|
325 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
326 |
for _, param in self.named_parameters(recurse=recurse):
|
|
|
12 |
from .modeling_xlm_roberta import (
|
13 |
XLMRobertaFlashConfig,
|
14 |
XLMRobertaModel,
|
|
|
15 |
)
|
16 |
|
17 |
|
|
|
208 |
layer.current_task = task_idx
|
209 |
|
210 |
|
211 |
+
class XLMRobertaLoRA(XLMRobertaModel):
|
212 |
def __init__(
|
213 |
self,
|
214 |
config: XLMRobertaFlashConfig,
|
|
|
215 |
):
|
216 |
super().__init__(config)
|
217 |
|
|
|
|
|
|
|
|
|
|
|
218 |
self._num_adaptations = len(config.lora_adaptations)
|
219 |
self._rank = config.lora_rank
|
220 |
self._dropout_p = config.lora_dropout_p
|
|
|
231 |
# By default, we select the first LoRA
|
232 |
self.current_task = 0
|
233 |
|
234 |
+
|
235 |
@property
|
236 |
def main_params_trainable(self):
|
237 |
return self._main_params_trainable
|
|
|
267 |
config = XLMRobertaFlashConfig.from_pretrained(
|
268 |
pretrained_model_name_or_path, *model_args, **kwargs
|
269 |
)
|
270 |
+
|
271 |
if config.load_trained_adapters:
|
272 |
return super().from_pretrained(
|
273 |
pretrained_model_name_or_path, *model_args, **kwargs
|
274 |
)
|
275 |
else:
|
276 |
+
torch.set_default_dtype(torch.float16)
|
277 |
+
return cls(config)
|
|
|
|
|
278 |
|
279 |
def _register_lora(self, num_adaptations, rank, dropout_p, alpha):
|
280 |
self.apply(
|
|
|
313 |
def forward(self, *args, lora_adaptation: Union[None, int] = -1, **kwargs):
|
314 |
if lora_adaptation is None or lora_adaptation >= 0:
|
315 |
self.current_task = lora_adaptation
|
316 |
+
return super().forward(*args, **kwargs)
|
317 |
|
318 |
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
|
319 |
for _, param in self.named_parameters(recurse=recurse):
|