michael-guenther
commited on
Commit
·
eb21270
1
Parent(s):
3d87c79
add script to convert weights
Browse files
convert_roberta_weights_to_flash.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from collections import OrderedDict
|
3 |
+
from transformers import BertConfig, PretrainedConfig
|
4 |
+
from transformers import XLMRobertaForMaskedLM
|
5 |
+
|
6 |
+
from flash_attn.models.bert import BertModel
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import click
|
10 |
+
|
11 |
+
## inspired by https://github.com/Dao-AILab/flash-attention/blob/85881f547fd1053a7b4a2c3faad6690cca969279/flash_attn/models/bert.py
|
12 |
+
|
13 |
+
|
14 |
+
def remap_state_dict(state_dict, config: PretrainedConfig):
|
15 |
+
"""
|
16 |
+
Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
|
17 |
+
"""
|
18 |
+
|
19 |
+
# Replace Roberta with Bert
|
20 |
+
def key_mapping_roberta(key):
|
21 |
+
return re.sub(r"^roberta.", "bert.", key)
|
22 |
+
|
23 |
+
state_dict = OrderedDict((key_mapping_roberta(k), v) for k, v in state_dict.items())
|
24 |
+
|
25 |
+
# LayerNorm
|
26 |
+
def key_mapping_ln_gamma_beta(key):
|
27 |
+
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
|
28 |
+
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
|
29 |
+
return key
|
30 |
+
|
31 |
+
state_dict = OrderedDict(
|
32 |
+
(key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()
|
33 |
+
)
|
34 |
+
|
35 |
+
# Layers
|
36 |
+
def key_mapping_layers(key):
|
37 |
+
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)
|
38 |
+
|
39 |
+
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
|
40 |
+
|
41 |
+
# LayerNorm
|
42 |
+
def key_mapping_ln(key):
|
43 |
+
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
|
44 |
+
key = re.sub(
|
45 |
+
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
|
46 |
+
r"bert.encoder.layers.\1.norm1.\2",
|
47 |
+
key,
|
48 |
+
)
|
49 |
+
key = re.sub(
|
50 |
+
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
|
51 |
+
r"bert.encoder.layers.\1.norm2.\2",
|
52 |
+
key,
|
53 |
+
)
|
54 |
+
key = re.sub(
|
55 |
+
r"^cls.predictions.transform.LayerNorm.(weight|bias)",
|
56 |
+
r"cls.predictions.transform.layer_norm.\1",
|
57 |
+
key,
|
58 |
+
)
|
59 |
+
return key
|
60 |
+
|
61 |
+
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
|
62 |
+
|
63 |
+
# MLP
|
64 |
+
def key_mapping_mlp(key):
|
65 |
+
key = re.sub(
|
66 |
+
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
|
67 |
+
r"bert.encoder.layers.\1.mlp.fc1.\2",
|
68 |
+
key,
|
69 |
+
)
|
70 |
+
key = re.sub(
|
71 |
+
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
|
72 |
+
r"bert.encoder.layers.\1.mlp.fc2.\2",
|
73 |
+
key,
|
74 |
+
)
|
75 |
+
return key
|
76 |
+
|
77 |
+
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
|
78 |
+
|
79 |
+
# Attention
|
80 |
+
last_layer_subset = getattr(config, "last_layer_subset", False)
|
81 |
+
for d in range(config.num_hidden_layers):
|
82 |
+
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
|
83 |
+
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
|
84 |
+
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
|
85 |
+
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
|
86 |
+
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
|
87 |
+
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
|
88 |
+
if not (last_layer_subset and d == config.num_hidden_layers - 1):
|
89 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
|
90 |
+
[Wq, Wk, Wv], dim=0
|
91 |
+
)
|
92 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat(
|
93 |
+
[bq, bk, bv], dim=0
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
|
97 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat(
|
98 |
+
[Wk, Wv], dim=0
|
99 |
+
)
|
100 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
|
101 |
+
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat(
|
102 |
+
[bk, bv], dim=0
|
103 |
+
)
|
104 |
+
|
105 |
+
def key_mapping_attn(key):
|
106 |
+
return re.sub(
|
107 |
+
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
|
108 |
+
r"bert.encoder.layers.\1.mixer.out_proj.\2",
|
109 |
+
key,
|
110 |
+
)
|
111 |
+
|
112 |
+
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
|
113 |
+
|
114 |
+
def key_mapping_decoder_bias(key):
|
115 |
+
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)
|
116 |
+
|
117 |
+
state_dict = OrderedDict(
|
118 |
+
(key_mapping_decoder_bias(k), v) for k, v in state_dict.items()
|
119 |
+
)
|
120 |
+
|
121 |
+
# Word embedding
|
122 |
+
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
|
123 |
+
if pad_vocab_size_multiple > 1:
|
124 |
+
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
|
125 |
+
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
|
126 |
+
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
|
127 |
+
)
|
128 |
+
decoder_weight = state_dict["cls.predictions.decoder.weight"]
|
129 |
+
state_dict["cls.predictions.decoder.weight"] = F.pad(
|
130 |
+
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
|
131 |
+
)
|
132 |
+
# If the vocab was padded, we want to set the decoder bias for those padded indices to be
|
133 |
+
# strongly negative (i.e. the decoder shouldn't predict those indices).
|
134 |
+
# TD [2022-05-09]: I don't think it affects the MLPerf training.
|
135 |
+
decoder_bias = state_dict["cls.predictions.decoder.bias"]
|
136 |
+
state_dict["cls.predictions.decoder.bias"] = F.pad(
|
137 |
+
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
|
138 |
+
)
|
139 |
+
|
140 |
+
# Embeddings
|
141 |
+
def key_remove_bert(key):
|
142 |
+
return re.sub(r"^bert.", "", key)
|
143 |
+
|
144 |
+
state_dict = OrderedDict(
|
145 |
+
(key_remove_bert(k), v)
|
146 |
+
for k, v in state_dict.items()
|
147 |
+
if not k.startswith('lm_head')
|
148 |
+
)
|
149 |
+
|
150 |
+
return state_dict
|
151 |
+
|
152 |
+
|
153 |
+
@click.command()
|
154 |
+
@click.option('--model_name', default='FacebookAI/xlm-roberta-base', help='model name')
|
155 |
+
@click.option('--output', default='converted_roberta_weights.bin', help='model name')
|
156 |
+
def main(model_name, output):
|
157 |
+
roberta_model = XLMRobertaForMaskedLM.from_pretrained(model_name)
|
158 |
+
config = BertConfig.from_dict(roberta_model.config.to_dict())
|
159 |
+
state_dict = roberta_model.state_dict()
|
160 |
+
new_state_dict = remap_state_dict(state_dict, config)
|
161 |
+
|
162 |
+
flash_model = BertModel(config)
|
163 |
+
|
164 |
+
for k, v in flash_model.state_dict().items():
|
165 |
+
if k not in new_state_dict:
|
166 |
+
print(f'Use old weights from {k}')
|
167 |
+
new_state_dict[k] = v
|
168 |
+
|
169 |
+
flash_model.load_state_dict(new_state_dict)
|
170 |
+
|
171 |
+
torch.save(new_state_dict, output)
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == '__main__':
|
175 |
+
main()
|