Upload PPO LunarLander-v2 trained agent
Browse files- LunarLander.zip +3 -0
- LunarLander/_stable_baselines3_version +1 -0
- LunarLander/data +95 -0
- LunarLander/policy.optimizer.pth +3 -0
- LunarLander/policy.pth +3 -0
- LunarLander/pytorch_variables.pth +3 -0
- LunarLander/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
LunarLander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2d43d177c13d0ff9b26f819d18cf37f327e40fd992317e91aa961e27a910636
|
3 |
+
size 147408
|
LunarLander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
LunarLander/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff575bb0ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff575bb0f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff575bb4040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff575bb40d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff575bb4160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff575bb41f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff575bb4280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff575bb4310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff575bb43a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff575bb4430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff575bb44c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff575bb4550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff575bb2940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680751484525448643,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALObo72PUiG67s/ZuLWvtrN6GCG7fHgBOAAAgD8AAIA/mkVsPbEa5D4iHOi9XfadviNVrr1W7868AAAAAAAAAAAzhky9e+atuk8xgjY6kHIx805rOkIGlbUAAIA/AACAPzPH8z2NkHI+xelSvjxcP77YkNu8TXXOPAAAAAAAAAAAZoMkvRxqdbyQLqC7nbu7PN392D3S5pW9AACAPwAAgD/6Hw4+XiXyPtbEf76QPLq+XyCtuyk1PDwAAAAAAAAAADODITzElCU+HYRWPWlohr6HWBI9oUelPQAAAAAAAAAAZmMtvhST3j6Qq3g+fJCbvgxP17zXJx4+AAAAAAAAAABAhtW9mXq9Pi93uz1BCo6+JgAGvcatlT0AAAAAAAAAAM30Izt2tkK8cfG4vJ9Udz2+nGw9eJcIPAAAgD8AAIA/RiVIPoQ0gD8T2s49qoqsvtMvRT4Kv4Y9AAAAAAAAAABaJrs9XzxXP4uThL6t972+zK8KPYtsDL4AAAAAAAAAAJoR0Dzx9ig8FmYlvvSvcb7Zqqu9HFtDPQAAAAAAAAAAAAeGvEJ2ZD7ifMI7d9h2vr5HwTsjhQ09AAAAAAAAAAAA/tg8A20uvBTCHL2ZD/a9g+divQsX774AAIA/AACAP+02PD6XNKc/B3EZPyPxpr66FGk+MHmAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6QyMvGwkckCUhpRSlIwBbJRNKQGMAXSUR0CRnNMuez2OdX2UKGgGaAloD0MIXRq/8EpSSECUhpRSlGgVS89oFkdAkZ2C1AqusHV9lChoBmgJaA9DCKg65GY4k3BAlIaUUpRoFU1TAWgWR0CRncZfD1oQdX2UKGgGaAloD0MIbqKW5lYOUUCUhpRSlGgVS8hoFkdAkZ3RjjJdSnV9lChoBmgJaA9DCIapLXVQznBAlIaUUpRoFU1kAWgWR0CRngkUbkwOdX2UKGgGaAloD0MIz4WRXlT6bkCUhpRSlGgVTSYBaBZHQJGeupzcRDl1fZQoaAZoCWgPQwj9MEJ4tN5xQJSGlFKUaBVNCQFoFkdAkZ9lnRLK3nV9lChoBmgJaA9DCECjdOmf8XJAlIaUUpRoFU0wAWgWR0CRoBtQsPJ8dX2UKGgGaAloD0MIchk3NdDEbUCUhpRSlGgVTQsBaBZHQJGgOMzdk8R1fZQoaAZoCWgPQwjxRXu8kI5QQJSGlFKUaBVLxmgWR0CRoI1yvLX+dX2UKGgGaAloD0MI6gWf5uR3SUCUhpRSlGgVS9NoFkdAkaEr0nPVu3V9lChoBmgJaA9DCC213m80TnJAlIaUUpRoFU1JAWgWR0CRocsw+MZQdX2UKGgGaAloD0MIBRVVv9I6ckCUhpRSlGgVTSUBaBZHQJGiJwaR6nl1fZQoaAZoCWgPQwjRIAVPIa9uQJSGlFKUaBVNCQFoFkdAkaI6e05U+HV9lChoBmgJaA9DCDfeHRkrOnFAlIaUUpRoFU08AWgWR0CRo6nTAnD0dX2UKGgGaAloD0MI/nvw2iWbcECUhpRSlGgVTQcBaBZHQJGkFk1/DtR1fZQoaAZoCWgPQwiGcw0zdPtyQJSGlFKUaBVNMQFoFkdAkaSGn0kGA3V9lChoBmgJaA9DCL69a9DXFHBAlIaUUpRoFU0/AWgWR0CRpS/NZ/0/dX2UKGgGaAloD0MI4jsx68XkbECUhpRSlGgVTSEBaBZHQJGlf7uUliV1fZQoaAZoCWgPQwiM2v0qwGpRQJSGlFKUaBVLwmgWR0CRpYgAp8WsdX2UKGgGaAloD0MI3XwjuieKc0CUhpRSlGgVTRsBaBZHQJGlogJTl1d1fZQoaAZoCWgPQwhZMVwdQBVwQJSGlFKUaBVNOQFoFkdAkaZNiH6/I3V9lChoBmgJaA9DCBajrrV3YXBAlIaUUpRoFU0UAWgWR0CRpmMvysjndX2UKGgGaAloD0MIQ8u6fyxSQECUhpRSlGgVS9poFkdAkaaF2/zreXV9lChoBmgJaA9DCLMKmwGuX2xAlIaUUpRoFU0PAWgWR0CRpxuqm0mddX2UKGgGaAloD0MICwvuB7wsbkCUhpRSlGgVTTIBaBZHQJGq+KBNEgJ1fZQoaAZoCWgPQwg+l6lJ8FdxQJSGlFKUaBVNQQFoFkdAkay8figkC3V9lChoBmgJaA9DCKRwPQpXjnBAlIaUUpRoFU0lAWgWR0CRrTqaPS2IdX2UKGgGaAloD0MIaFpiZTTSckCUhpRSlGgVTRUBaBZHQJGvbZ00WM11fZQoaAZoCWgPQwigUiXK3nhxQJSGlFKUaBVNbQFoFkdAkbBGzfJmunV9lChoBmgJaA9DCPIiE/Brv3BAlIaUUpRoFU0LAWgWR0CRsWPepGWldX2UKGgGaAloD0MILXdmguE1ckCUhpRSlGgVTXEBaBZHQJGxZSCOFQF1fZQoaAZoCWgPQwha8KKvoCNuQJSGlFKUaBVNIwFoFkdAkbHS0Sh8IHV9lChoBmgJaA9DCINStHLvf3BAlIaUUpRoFU0KAWgWR0CRsdPHT7VKdX2UKGgGaAloD0MIeeqRBrd9cUCUhpRSlGgVTTIBaBZHQJGx7BfrrxB1fZQoaAZoCWgPQwjK3HwjOityQJSGlFKUaBVL+WgWR0CRsiOxB3RpdX2UKGgGaAloD0MI4lZBDHRnbkCUhpRSlGgVTR8BaBZHQJGyp66asp51fZQoaAZoCWgPQwigT+RJ0qtwQJSGlFKUaBVNCQFoFkdAkbLzy4FzMnV9lChoBmgJaA9DCPbP04BB/m5AlIaUUpRoFU0rAWgWR0CRs/u0CzTndX2UKGgGaAloD0MIn6wYrg73ckCUhpRSlGgVTUEBaBZHQJG0FuzhP0t1fZQoaAZoCWgPQwiiXvBpTqtxQJSGlFKUaBVNTQFoFkdAkbY3UlRgqnV9lChoBmgJaA9DCIfCZ+ugV3FAlIaUUpRoFU0VAWgWR0CRtvrKeTV2dX2UKGgGaAloD0MICJEMOTbOcECUhpRSlGgVTRgBaBZHQJG4LjuKGcp1fZQoaAZoCWgPQwgbS1gb45RsQJSGlFKUaBVNGwFoFkdAkbiVLJ0W/XV9lChoBmgJaA9DCH6MuWuJr3FAlIaUUpRoFU0dAWgWR0CRyneq7yxzdX2UKGgGaAloD0MIwoh9AmhTckCUhpRSlGgVTQcBaBZHQJHLJ2dNFjN1fZQoaAZoCWgPQwgHz4QmiSJQQJSGlFKUaBVL1WgWR0CRy1dbgTAWdX2UKGgGaAloD0MI7tCwGHXeb0CUhpRSlGgVTS4BaBZHQJHLkht+Csh1fZQoaAZoCWgPQwjSyOcVz5hwQJSGlFKUaBVNKwFoFkdAkcxy/oJRfnV9lChoBmgJaA9DCEcf8wGBm3BAlIaUUpRoFU0CAWgWR0CRzQW7e2uxdX2UKGgGaAloD0MI5xn7kk3UcECUhpRSlGgVTSEBaBZHQJHND1schkl1fZQoaAZoCWgPQwgeNLvuLdVwQJSGlFKUaBVNPgFoFkdAkc0qyGBWgnV9lChoBmgJaA9DCIDXZ856UHFAlIaUUpRoFU06AWgWR0CRzZRCx/utdX2UKGgGaAloD0MIBRbAlAHQcECUhpRSlGgVTUgBaBZHQJHNmxC6Ymd1fZQoaAZoCWgPQwhTswdaAVpvQJSGlFKUaBVNdAFoFkdAkc5VUADJVHV9lChoBmgJaA9DCGtGBrlLpHFAlIaUUpRoFU0VAWgWR0CRzvffoA4odX2UKGgGaAloD0MItAJDVnekcUCUhpRSlGgVTRkBaBZHQJHPt2ki2Ul1fZQoaAZoCWgPQwg8Ei9P5wtxQJSGlFKUaBVNvwFoFkdAkdAesPrfL3V9lChoBmgJaA9DCM/abRea/nBAlIaUUpRoFU0aAWgWR0CR0MQAuIykdX2UKGgGaAloD0MIu0OKAVJKcUCUhpRSlGgVS+9oFkdAkdHrf1pTM3V9lChoBmgJaA9DCN/foL16xHFAlIaUUpRoFU04AWgWR0CR0fpyp71JdX2UKGgGaAloD0MIhgMhWUAtcECUhpRSlGgVTQsBaBZHQJHSkKiO/+N1fZQoaAZoCWgPQwj11VWB2iFyQJSGlFKUaBVL6mgWR0CR0yOsT37DdX2UKGgGaAloD0MI2zAKgsfhRUCUhpRSlGgVS9toFkdAkdNAWBSUDHV9lChoBmgJaA9DCOYivhOzWG9AlIaUUpRoFU0BAWgWR0CR0/Z75VOsdX2UKGgGaAloD0MI4dBbPDxdcUCUhpRSlGgVTWgBaBZHQJHUtoEjgQ91fZQoaAZoCWgPQwgO2UC6WChxQJSGlFKUaBVL82gWR0CR1No6S1VpdX2UKGgGaAloD0MIZp/HKE9PcECUhpRSlGgVTTkBaBZHQJHU/NorWiF1fZQoaAZoCWgPQwgZ529CoUFxQJSGlFKUaBVNMAFoFkdAkdUyaVlf7nV9lChoBmgJaA9DCLe28LwUYXBAlIaUUpRoFU1tAWgWR0CR1asOXmeUdX2UKGgGaAloD0MIJ8Cw/PlhckCUhpRSlGgVTS8BaBZHQJHX+Ymb9ZR1fZQoaAZoCWgPQwiquHGLefNvQJSGlFKUaBVNCwFoFkdAkdgz/uLJjnV9lChoBmgJaA9DCI2Y2efxDXFAlIaUUpRoFU0wAWgWR0CR2IAtFrmAdX2UKGgGaAloD0MIWg70UFvgcUCUhpRSlGgVTV8BaBZHQJHYf6KtPpJ1fZQoaAZoCWgPQwjVdhN80/9RQJSGlFKUaBVLy2gWR0CR2NZzgdfcdX2UKGgGaAloD0MINGQ8SuWUcUCUhpRSlGgVTbgBaBZHQJHZUJu2qkx1fZQoaAZoCWgPQwg25nXEIZJRQJSGlFKUaBVL4mgWR0CR2VPtUn5SdX2UKGgGaAloD0MIem02ViI3cECUhpRSlGgVTRMBaBZHQJHZhrRBu4x1fZQoaAZoCWgPQwgOFHgnn4pCQJSGlFKUaBVLzGgWR0CR2izCk43ndX2UKGgGaAloD0MIhNOCFz0scUCUhpRSlGgVTU0BaBZHQJHa8SPEKmd1fZQoaAZoCWgPQwiCdLFppTlyQJSGlFKUaBVNSQFoFkdAkdt0gwGnoHV9lChoBmgJaA9DCLsPQGqTUWxAlIaUUpRoFU0mAWgWR0CR280ngHeKdX2UKGgGaAloD0MI18OXiaKWcECUhpRSlGgVTR8BaBZHQJHcQIE8q4J1fZQoaAZoCWgPQwgEHa1qyRNxQJSGlFKUaBVNKQFoFkdAkdz/DpC8e3V9lChoBmgJaA9DCBke+1lsG3BAlIaUUpRoFU0kAWgWR0CR3VyZa3ZxdX2UKGgGaAloD0MIxHqjVhgEckCUhpRSlGgVTUgBaBZHQJHdl6qsEJV1fZQoaAZoCWgPQwj3sBcK2ORvQJSGlFKUaBVNAQFoFkdAkd+ojfNzKnV9lChoBmgJaA9DCJks7j9ya3BAlIaUUpRoFU0EAWgWR0CR38s6JZW8dX2UKGgGaAloD0MIc0hqoaRgckCUhpRSlGgVTSoBaBZHQJHhAeCCjDd1fZQoaAZoCWgPQwhozvqUY2hvQJSGlFKUaBVNCQFoFkdAkeFzl90A93V9lChoBmgJaA9DCHDtRElIO25AlIaUUpRoFU0IAWgWR0CR4cAMUh3adX2UKGgGaAloD0MIbYyd8JKTbkCUhpRSlGgVS/hoFkdAkeI4CZF5OnV9lChoBmgJaA9DCJxTyQCQ4HBAlIaUUpRoFU1XAWgWR0CR4pYjB2wFdX2UKGgGaAloD0MItwn3yjxdb0CUhpRSlGgVTSgBaBZHQJHitFTefqZ1fZQoaAZoCWgPQwhJaTaPgxBzQJSGlFKUaBVNQQFoFkdAkeLyp71Iy3V9lChoBmgJaA9DCBGq1OyBv3BAlIaUUpRoFU0DAWgWR0CR5GjZcs19dX2UKGgGaAloD0MIFeRnI5f0cUCUhpRSlGgVS+9oFkdAkeTED6nBL3V9lChoBmgJaA9DCIeL3NNV/W9AlIaUUpRoFU0qAWgWR0CR5Rg3974SdX2UKGgGaAloD0MIak/JOXG7cUCUhpRSlGgVTR8BaBZHQJHlu+cpb2V1fZQoaAZoCWgPQwhHAg02dXlwQJSGlFKUaBVNIAFoFkdAkeeDyFwkxHVlLg=="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
LunarLander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2643301b8383dcd5f1b1ed7bfc7cd0852d981d7d324c0aa89cbcdcae38eb5208
|
3 |
+
size 87929
|
LunarLander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65b4217101dadba2b911e2e32545ff1bcbbd2e768ab09a1eee55150b1b284449
|
3 |
+
size 43393
|
LunarLander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 254.58 +/- 23.70
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff575bb0ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff575bb0f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff575bb4040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff575bb40d0>", "_build": "<function ActorCriticPolicy._build at 0x7ff575bb4160>", "forward": "<function ActorCriticPolicy.forward at 0x7ff575bb41f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff575bb4280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff575bb4310>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff575bb43a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff575bb4430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff575bb44c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff575bb4550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff575bb2940>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680751484525448643, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALObo72PUiG67s/ZuLWvtrN6GCG7fHgBOAAAgD8AAIA/mkVsPbEa5D4iHOi9XfadviNVrr1W7868AAAAAAAAAAAzhky9e+atuk8xgjY6kHIx805rOkIGlbUAAIA/AACAPzPH8z2NkHI+xelSvjxcP77YkNu8TXXOPAAAAAAAAAAAZoMkvRxqdbyQLqC7nbu7PN392D3S5pW9AACAPwAAgD/6Hw4+XiXyPtbEf76QPLq+XyCtuyk1PDwAAAAAAAAAADODITzElCU+HYRWPWlohr6HWBI9oUelPQAAAAAAAAAAZmMtvhST3j6Qq3g+fJCbvgxP17zXJx4+AAAAAAAAAABAhtW9mXq9Pi93uz1BCo6+JgAGvcatlT0AAAAAAAAAAM30Izt2tkK8cfG4vJ9Udz2+nGw9eJcIPAAAgD8AAIA/RiVIPoQ0gD8T2s49qoqsvtMvRT4Kv4Y9AAAAAAAAAABaJrs9XzxXP4uThL6t972+zK8KPYtsDL4AAAAAAAAAAJoR0Dzx9ig8FmYlvvSvcb7Zqqu9HFtDPQAAAAAAAAAAAAeGvEJ2ZD7ifMI7d9h2vr5HwTsjhQ09AAAAAAAAAAAA/tg8A20uvBTCHL2ZD/a9g+divQsX774AAIA/AACAP+02PD6XNKc/B3EZPyPxpr66FGk+MHmAPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6QyMvGwkckCUhpRSlIwBbJRNKQGMAXSUR0CRnNMuez2OdX2UKGgGaAloD0MIXRq/8EpSSECUhpRSlGgVS89oFkdAkZ2C1AqusHV9lChoBmgJaA9DCKg65GY4k3BAlIaUUpRoFU1TAWgWR0CRncZfD1oQdX2UKGgGaAloD0MIbqKW5lYOUUCUhpRSlGgVS8hoFkdAkZ3RjjJdSnV9lChoBmgJaA9DCIapLXVQznBAlIaUUpRoFU1kAWgWR0CRngkUbkwOdX2UKGgGaAloD0MIz4WRXlT6bkCUhpRSlGgVTSYBaBZHQJGeupzcRDl1fZQoaAZoCWgPQwj9MEJ4tN5xQJSGlFKUaBVNCQFoFkdAkZ9lnRLK3nV9lChoBmgJaA9DCECjdOmf8XJAlIaUUpRoFU0wAWgWR0CRoBtQsPJ8dX2UKGgGaAloD0MIchk3NdDEbUCUhpRSlGgVTQsBaBZHQJGgOMzdk8R1fZQoaAZoCWgPQwjxRXu8kI5QQJSGlFKUaBVLxmgWR0CRoI1yvLX+dX2UKGgGaAloD0MI6gWf5uR3SUCUhpRSlGgVS9NoFkdAkaEr0nPVu3V9lChoBmgJaA9DCC213m80TnJAlIaUUpRoFU1JAWgWR0CRocsw+MZQdX2UKGgGaAloD0MIBRVVv9I6ckCUhpRSlGgVTSUBaBZHQJGiJwaR6nl1fZQoaAZoCWgPQwjRIAVPIa9uQJSGlFKUaBVNCQFoFkdAkaI6e05U+HV9lChoBmgJaA9DCDfeHRkrOnFAlIaUUpRoFU08AWgWR0CRo6nTAnD0dX2UKGgGaAloD0MI/nvw2iWbcECUhpRSlGgVTQcBaBZHQJGkFk1/DtR1fZQoaAZoCWgPQwiGcw0zdPtyQJSGlFKUaBVNMQFoFkdAkaSGn0kGA3V9lChoBmgJaA9DCL69a9DXFHBAlIaUUpRoFU0/AWgWR0CRpS/NZ/0/dX2UKGgGaAloD0MI4jsx68XkbECUhpRSlGgVTSEBaBZHQJGlf7uUliV1fZQoaAZoCWgPQwiM2v0qwGpRQJSGlFKUaBVLwmgWR0CRpYgAp8WsdX2UKGgGaAloD0MI3XwjuieKc0CUhpRSlGgVTRsBaBZHQJGlogJTl1d1fZQoaAZoCWgPQwhZMVwdQBVwQJSGlFKUaBVNOQFoFkdAkaZNiH6/I3V9lChoBmgJaA9DCBajrrV3YXBAlIaUUpRoFU0UAWgWR0CRpmMvysjndX2UKGgGaAloD0MIQ8u6fyxSQECUhpRSlGgVS9poFkdAkaaF2/zreXV9lChoBmgJaA9DCLMKmwGuX2xAlIaUUpRoFU0PAWgWR0CRpxuqm0mddX2UKGgGaAloD0MICwvuB7wsbkCUhpRSlGgVTTIBaBZHQJGq+KBNEgJ1fZQoaAZoCWgPQwg+l6lJ8FdxQJSGlFKUaBVNQQFoFkdAkay8figkC3V9lChoBmgJaA9DCKRwPQpXjnBAlIaUUpRoFU0lAWgWR0CRrTqaPS2IdX2UKGgGaAloD0MIaFpiZTTSckCUhpRSlGgVTRUBaBZHQJGvbZ00WM11fZQoaAZoCWgPQwigUiXK3nhxQJSGlFKUaBVNbQFoFkdAkbBGzfJmunV9lChoBmgJaA9DCPIiE/Brv3BAlIaUUpRoFU0LAWgWR0CRsWPepGWldX2UKGgGaAloD0MILXdmguE1ckCUhpRSlGgVTXEBaBZHQJGxZSCOFQF1fZQoaAZoCWgPQwha8KKvoCNuQJSGlFKUaBVNIwFoFkdAkbHS0Sh8IHV9lChoBmgJaA9DCINStHLvf3BAlIaUUpRoFU0KAWgWR0CRsdPHT7VKdX2UKGgGaAloD0MIeeqRBrd9cUCUhpRSlGgVTTIBaBZHQJGx7BfrrxB1fZQoaAZoCWgPQwjK3HwjOityQJSGlFKUaBVL+WgWR0CRsiOxB3RpdX2UKGgGaAloD0MI4lZBDHRnbkCUhpRSlGgVTR8BaBZHQJGyp66asp51fZQoaAZoCWgPQwigT+RJ0qtwQJSGlFKUaBVNCQFoFkdAkbLzy4FzMnV9lChoBmgJaA9DCPbP04BB/m5AlIaUUpRoFU0rAWgWR0CRs/u0CzTndX2UKGgGaAloD0MIn6wYrg73ckCUhpRSlGgVTUEBaBZHQJG0FuzhP0t1fZQoaAZoCWgPQwiiXvBpTqtxQJSGlFKUaBVNTQFoFkdAkbY3UlRgqnV9lChoBmgJaA9DCIfCZ+ugV3FAlIaUUpRoFU0VAWgWR0CRtvrKeTV2dX2UKGgGaAloD0MICJEMOTbOcECUhpRSlGgVTRgBaBZHQJG4LjuKGcp1fZQoaAZoCWgPQwgbS1gb45RsQJSGlFKUaBVNGwFoFkdAkbiVLJ0W/XV9lChoBmgJaA9DCH6MuWuJr3FAlIaUUpRoFU0dAWgWR0CRyneq7yxzdX2UKGgGaAloD0MIwoh9AmhTckCUhpRSlGgVTQcBaBZHQJHLJ2dNFjN1fZQoaAZoCWgPQwgHz4QmiSJQQJSGlFKUaBVL1WgWR0CRy1dbgTAWdX2UKGgGaAloD0MI7tCwGHXeb0CUhpRSlGgVTS4BaBZHQJHLkht+Csh1fZQoaAZoCWgPQwjSyOcVz5hwQJSGlFKUaBVNKwFoFkdAkcxy/oJRfnV9lChoBmgJaA9DCEcf8wGBm3BAlIaUUpRoFU0CAWgWR0CRzQW7e2uxdX2UKGgGaAloD0MI5xn7kk3UcECUhpRSlGgVTSEBaBZHQJHND1schkl1fZQoaAZoCWgPQwgeNLvuLdVwQJSGlFKUaBVNPgFoFkdAkc0qyGBWgnV9lChoBmgJaA9DCIDXZ856UHFAlIaUUpRoFU06AWgWR0CRzZRCx/utdX2UKGgGaAloD0MIBRbAlAHQcECUhpRSlGgVTUgBaBZHQJHNmxC6Ymd1fZQoaAZoCWgPQwhTswdaAVpvQJSGlFKUaBVNdAFoFkdAkc5VUADJVHV9lChoBmgJaA9DCGtGBrlLpHFAlIaUUpRoFU0VAWgWR0CRzvffoA4odX2UKGgGaAloD0MItAJDVnekcUCUhpRSlGgVTRkBaBZHQJHPt2ki2Ul1fZQoaAZoCWgPQwg8Ei9P5wtxQJSGlFKUaBVNvwFoFkdAkdAesPrfL3V9lChoBmgJaA9DCM/abRea/nBAlIaUUpRoFU0aAWgWR0CR0MQAuIykdX2UKGgGaAloD0MIu0OKAVJKcUCUhpRSlGgVS+9oFkdAkdHrf1pTM3V9lChoBmgJaA9DCN/foL16xHFAlIaUUpRoFU04AWgWR0CR0fpyp71JdX2UKGgGaAloD0MIhgMhWUAtcECUhpRSlGgVTQsBaBZHQJHSkKiO/+N1fZQoaAZoCWgPQwj11VWB2iFyQJSGlFKUaBVL6mgWR0CR0yOsT37DdX2UKGgGaAloD0MI2zAKgsfhRUCUhpRSlGgVS9toFkdAkdNAWBSUDHV9lChoBmgJaA9DCOYivhOzWG9AlIaUUpRoFU0BAWgWR0CR0/Z75VOsdX2UKGgGaAloD0MI4dBbPDxdcUCUhpRSlGgVTWgBaBZHQJHUtoEjgQ91fZQoaAZoCWgPQwgO2UC6WChxQJSGlFKUaBVL82gWR0CR1No6S1VpdX2UKGgGaAloD0MIZp/HKE9PcECUhpRSlGgVTTkBaBZHQJHU/NorWiF1fZQoaAZoCWgPQwgZ529CoUFxQJSGlFKUaBVNMAFoFkdAkdUyaVlf7nV9lChoBmgJaA9DCLe28LwUYXBAlIaUUpRoFU1tAWgWR0CR1asOXmeUdX2UKGgGaAloD0MIJ8Cw/PlhckCUhpRSlGgVTS8BaBZHQJHX+Ymb9ZR1fZQoaAZoCWgPQwiquHGLefNvQJSGlFKUaBVNCwFoFkdAkdgz/uLJjnV9lChoBmgJaA9DCI2Y2efxDXFAlIaUUpRoFU0wAWgWR0CR2IAtFrmAdX2UKGgGaAloD0MIWg70UFvgcUCUhpRSlGgVTV8BaBZHQJHYf6KtPpJ1fZQoaAZoCWgPQwjVdhN80/9RQJSGlFKUaBVLy2gWR0CR2NZzgdfcdX2UKGgGaAloD0MINGQ8SuWUcUCUhpRSlGgVTbgBaBZHQJHZUJu2qkx1fZQoaAZoCWgPQwg25nXEIZJRQJSGlFKUaBVL4mgWR0CR2VPtUn5SdX2UKGgGaAloD0MIem02ViI3cECUhpRSlGgVTRMBaBZHQJHZhrRBu4x1fZQoaAZoCWgPQwgOFHgnn4pCQJSGlFKUaBVLzGgWR0CR2izCk43ndX2UKGgGaAloD0MIhNOCFz0scUCUhpRSlGgVTU0BaBZHQJHa8SPEKmd1fZQoaAZoCWgPQwiCdLFppTlyQJSGlFKUaBVNSQFoFkdAkdt0gwGnoHV9lChoBmgJaA9DCLsPQGqTUWxAlIaUUpRoFU0mAWgWR0CR280ngHeKdX2UKGgGaAloD0MI18OXiaKWcECUhpRSlGgVTR8BaBZHQJHcQIE8q4J1fZQoaAZoCWgPQwgEHa1qyRNxQJSGlFKUaBVNKQFoFkdAkdz/DpC8e3V9lChoBmgJaA9DCBke+1lsG3BAlIaUUpRoFU0kAWgWR0CR3VyZa3ZxdX2UKGgGaAloD0MIxHqjVhgEckCUhpRSlGgVTUgBaBZHQJHdl6qsEJV1fZQoaAZoCWgPQwj3sBcK2ORvQJSGlFKUaBVNAQFoFkdAkd+ojfNzKnV9lChoBmgJaA9DCJks7j9ya3BAlIaUUpRoFU0EAWgWR0CR38s6JZW8dX2UKGgGaAloD0MIc0hqoaRgckCUhpRSlGgVTSoBaBZHQJHhAeCCjDd1fZQoaAZoCWgPQwhozvqUY2hvQJSGlFKUaBVNCQFoFkdAkeFzl90A93V9lChoBmgJaA9DCHDtRElIO25AlIaUUpRoFU0IAWgWR0CR4cAMUh3adX2UKGgGaAloD0MIbYyd8JKTbkCUhpRSlGgVS/hoFkdAkeI4CZF5OnV9lChoBmgJaA9DCJxTyQCQ4HBAlIaUUpRoFU1XAWgWR0CR4pYjB2wFdX2UKGgGaAloD0MItwn3yjxdb0CUhpRSlGgVTSgBaBZHQJHitFTefqZ1fZQoaAZoCWgPQwhJaTaPgxBzQJSGlFKUaBVNQQFoFkdAkeLyp71Iy3V9lChoBmgJaA9DCBGq1OyBv3BAlIaUUpRoFU0DAWgWR0CR5GjZcs19dX2UKGgGaAloD0MIFeRnI5f0cUCUhpRSlGgVS+9oFkdAkeTED6nBL3V9lChoBmgJaA9DCIeL3NNV/W9AlIaUUpRoFU0qAWgWR0CR5Rg3974SdX2UKGgGaAloD0MIak/JOXG7cUCUhpRSlGgVTR8BaBZHQJHlu+cpb2V1fZQoaAZoCWgPQwhHAg02dXlwQJSGlFKUaBVNIAFoFkdAkeeDyFwkxHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (230 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 254.57916561932333, "std_reward": 23.70324045964191, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-06T03:59:29.846549"}
|