jlondonobo commited on
Commit
a4e3282
·
1 Parent(s): 7982bb5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -35
README.md CHANGED
@@ -27,54 +27,51 @@ model-index:
27
  value: 5.590020342630419
28
  ---
29
 
30
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
- should probably proofread and complete it, then remove this comment. -->
32
 
33
- # Whisper Large v2 Portuguese
34
 
35
- This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the mozilla-foundation/common_voice_11_0 pt dataset.
36
- It achieves the following results on the evaluation set:
37
- - Loss: 0.2821
38
- - Wer: 5.5900
39
 
40
- ## Model description
 
41
 
42
- More information needed
43
 
44
- ## Intended uses & limitations
 
 
 
 
 
 
 
 
45
 
46
- More information needed
47
-
48
- ## Training and evaluation data
49
-
50
- More information needed
51
-
52
- ## Training procedure
53
 
54
  ### Training hyperparameters
55
-
56
- The following hyperparameters were used during training:
57
- - learning_rate: 1e-05
58
- - train_batch_size: 16
59
- - eval_batch_size: 8
60
- - seed: 42
61
- - gradient_accumulation_steps: 2
62
- - total_train_batch_size: 32
63
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
- - lr_scheduler_type: linear
65
- - lr_scheduler_warmup_steps: 500
66
- - training_steps: 5000
67
- - mixed_precision_training: Native AMP
68
 
69
  ### Training results
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Wer |
72
  |:-------------:|:-----:|:----:|:---------------:|:------:|
73
- | 0.0828 | 1.09 | 1000 | 0.1868 | 6.7786 |
74
- | 0.0241 | 3.07 | 2000 | 0.2057 | 6.1095 |
75
- | 0.0084 | 5.06 | 3000 | 0.2367 | 6.0288 |
76
- | 0.0015 | 7.04 | 4000 | 0.2469 | 5.7094 |
77
- | 0.0009 | 9.02 | 5000 | 0.2821 | 5.5900 |
78
 
79
 
80
  ### Framework versions
 
27
  value: 5.590020342630419
28
  ---
29
 
30
+ # Whisper Large V2 Portuguese 🇧🇷🇵🇹
 
31
 
32
+ Bem-vindo ao **whisper large-v2** para transcrição em português 👋🏻
33
 
34
+ Transcribe Portuguese audio to text with the highest precision.
 
 
 
35
 
36
+ - Loss: 0.282
37
+ - Wer: 5.590
38
 
39
+ This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the [mozilla-foundation/common_voice_11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset. If you want a lighter model, you may be interested in [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt). It achieves faster inference with almost no difference in WER.
40
 
41
+ ### Comparable models
42
+ Reported **WER** is based on the evaluation subset of Common Voice.
43
+ | Model | WER | # Parameters |
44
+ |--------------------------------------------------|:--------:|:------------:|
45
+ | [jlondonobo/whisper-large-v2-pt](https://huggingface.co/jlondonobo/whisper-large-v2-pt) | **5.590** 🤗 | 1550M |
46
+ | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 6.300 | 1550M |
47
+ | [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt) | 6.579 | 769M |
48
+ | [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) | 11.310 | 317M |
49
+ | [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) | 20.080 | 317M |
50
 
 
 
 
 
 
 
 
51
 
52
  ### Training hyperparameters
53
+ We used the following hyperparameters for training:
54
+ - `learning_rate`: 1e-05
55
+ - `train_batch_size`: 16
56
+ - `eval_batch_size`: 8
57
+ - `seed`: 42
58
+ - `gradient_accumulation_steps`: 2
59
+ - `total_train_batch_size`: 32
60
+ - `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - `lr_scheduler_type`: linear
62
+ - `lr_scheduler_warmup_steps`: 500
63
+ - `training_steps`: 5000
64
+ - `mixed_precision_training`: Native AMP
 
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | 0.0828 | 1.09 | 1000 | 0.1868 | 6.778 |
71
+ | 0.0241 | 3.07 | 2000 | 0.2057 | 6.109 |
72
+ | 0.0084 | 5.06 | 3000 | 0.2367 | 6.029 |
73
+ | 0.0015 | 7.04 | 4000 | 0.2469 | 5.709 |
74
+ | 0.0009 | 9.02 | 5000 | 0.2821 | 5.590 🤗|
75
 
76
 
77
  ### Framework versions