File size: 2,024 Bytes
b2364bc 6be2c55 b2364bc 6be2c55 b2364bc 6be2c55 b2364bc 6be2c55 b2364bc 6be2c55 b2364bc aa6870c b2364bc aa6870c b2364bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
language:
- pt
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Portuguese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 pt
type: mozilla-foundation/common_voice_11_0
config: pt
split: test
args: pt
metrics:
- name: Wer
type: wer
value: 10.245288411425497
---
# Whisper Small Portuguese 🇧🇷🇵🇹
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [mozilla-foundation/common_voice_11_0 pt](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/pt) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3887
- Wer: 10.2453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0492 | 3.04 | 1000 | 0.2459 | 10.3562 |
| 0.0065 | 7.02 | 2000 | 0.3180 | 10.4521 |
| 0.002 | 11.0 | 3000 | 0.3571 | 10.2924 |
| 0.0009 | 14.04 | 4000 | 0.3816 | 10.2268 |
| 0.0008 | 18.02 | 5000 | 0.3887 | 10.2453 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|