File size: 2,007 Bytes
c7afa00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e541040
 
 
 
c7afa00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4655b47
e541040
c7afa00
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: jmparejaz/QA-finetuned-distilbert-TFv3
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# jmparejaz/QA-finetuned-distilbert-TFv3

This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.7657
- Train End Logits Accuracy: 0.7881
- Train Start Logits Accuracy: 0.7517
- Epoch: 2

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0002, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0002, 'decay_steps': 22180, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 2, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32

### Training results

| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:-----:|
| 2.1678     | 0.4575                    | 0.4238                      | 0     |
| 1.2064     | 0.6709                    | 0.6336                      | 1     |
| 0.7657     | 0.7881                    | 0.7517                      | 2     |


### Framework versions

- Transformers 4.25.1
- TensorFlow 2.9.2
- Datasets 2.8.0
- Tokenizers 0.13.2