File size: 51,882 Bytes
180c742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf5082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180c742
 
 
 
 
 
16f9f23
1692eb9
16f9f23
 
 
 
 
180c742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c77ae2
0a7c7fb
6cd7091
1d9e5a1
6cd7091
 
 
 
 
 
 
 
 
180c742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
---
base_model: answerdotai/ModernBERT-large
datasets:
- sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1
language:
- en
library_name: sentence-transformers
metrics:
- cosine_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:11662655
- loss:CachedMultipleNegativesRankingLoss
widget:
- source_sentence: what county is lyndhurst, ohio in
  sentences:
  - This article is about the song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
    For the Tina Turner song, see Don't Leave Me This Way (Tina Turner song). Don't
    Leave Me This Way is a song written by Kenneth Gamble, Leon Huff and Cary Gilbert.
    First charting as a hit for Harold Melvin & the Blue Notes featuring Teddy Pendergrass,
    an act on Gamble & Huff's Philadelphia International label in 1975, Don't Leave
    Me This Way was later a huge disco hit for Motown artist Thelma Houston in 1977.
  - "Lyndhurst is a city in Cuyahoga County, Ohio, United States. The population was\
    \ 14,001 at the 2010 census. Lyndhurst is located in northeastern Ohio, and is\
    \ a suburb of Cleveland. A small part of Lyndhurst was originally part of Mayfield\
    \ Township. It used to be called Euclidville before Lyndhurst was chosen. Lyndhurst\
    \ is located at 41°31â\x80²17â\x80³N 81°29â\x80²25â\x80³W / 41.52139°N 81.49028°W\
    \ / 41.52139; -81.49028 (41.521352, -81.490141)."
  - Welcome to Trumbull County... Trumbull County, the county seat, located in Warren,
    Ohio, consists of a combination of both urban and rural communities situated in
    the northeast corner of Ohio. It is situated roughly between the Youngstown, Cleveland
    and Akron corridors.
- source_sentence: who founded the american graphophone company
  sentences:
  - In 1886, Graham Bell and Charles Sumner Tainter founded the American Graphophone
    Company to distribute and sell graphophones in the US and Canada under license
    from the Volta Graphophone Company. In 1890, the American Graphophone Company
    stopped production of new phonographs due to sagging orders.
  - ShelfGenie How much does a ShelfGenie franchise cost? ShelfGenie has a franchise
    fee of up to $45,000, with a total initial investment range of $70,100 to $107,750.
    Local ShelfGenie franchise opportunities. ShelfGenie is looking to grow in a number
    of cities around the country. To find out if there's a franchise opportunity in
    your city, unlock more information.
  - "A+E Networks. The technology that made the modern music business possible came\
    \ into existence in the New Jersey laboratory where Thomas Alva Edison created\
    \ the first device to both record sound and play it back. He was awarded U.S.\
    \ Patent No. 200,521 for his inventionâ\x80\x93the phonographâ\x80\x93on this\
    \ day in 1878."
- source_sentence: is housekeeping camp flooded?
  sentences:
  - 'What is the importance of housekeeping at work? A: Workplace housekeeping promotes
    sanitation, safety, organization and productivity. It also boosts morale. Daily
    housekeeping maintenance keeps the workplac... Full Answer >'
  - The back patio area of a cabin is partially submerged in flood water at Housekeeping
    Camp on Monday, Jan. 9, 2017, in Yosemite National Park. The Merced River, swollen
    with storm runoff, crested at 12.7 feet at 4 a.m. SILVIA FLORES [email protected].
  - "1 Bake for 8 minutes, then rotate the pan and check the underside of the bagels.\
    \ 2  If theyâ\x80\x99re getting too dark, place another pan under the baking sheet.\
    \ ( 3 Doubling the pan will insulate the first baking sheet.) Bake for another\
    \ 8 to 12 minutes, until the bagels are a golden brown. 4  13."
- source_sentence: causes for infection in the nerve of tooth
  sentences:
  - If a cavity is causing the toothache, your dentist will fill the cavity or possibly
    extract the tooth, if necessary. A root canal might be needed if the cause of
    the toothache is determined to be an infection of the tooth's nerve. Bacteria
    that have worked their way into the inner aspects of the tooth cause such an infection.
    An antibiotic may be prescribed if there is fever or swelling of the jaw.
  - "According to Article III, Section 1 of the Constitution, judges and justices\
    \ of the Judicial Branch serve during good behavior.. This means they are appointed\
    \ for life, unles â\x80¦ s they are impeached and removed from office. + 50 others\
    \ found this useful.he term length for members of the House are two years and\
    \ a staggering six years for members of the Senate."
  - Inflamed or infected pulp (pulpitis) most often causes a toothache. To relieve
    the pain and prevent further complications, the tooth may be extracted (surgically
    removed) or saved by root canal treatment.
- source_sentence: what county is hayden in
  sentences:
  - Normally, the Lead Agency is the agency with general governmental powers such
    as a city or a county. Agencies with limited powers or districts that provide
    a public service/utility such as a recreation and park district will tend to be
    a Responsible Agency.
  - According to the United States Census Bureau, the city has a total area of 9.61
    square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01
    square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake,
    and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is
    located on U.S. Route 95 at the junction of Route 41. It is also four miles (6
    km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest
    of Hayden.
  - Hayden is a city in Kootenai County, Idaho, United States. Located in the northern
    portion of the state, just north of Coeur d'Alene, its population was 13,294 at
    the 2010 census.
model-index:
- name: SentenceTransformer based on answerdotai/ModernBERT-large
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: msmarco co condenser dev
      type: msmarco-co-condenser-dev
    metrics:
    - type: cosine_accuracy
      value: 0.994
      name: Cosine Accuracy
  - task:
      type: retrieval
    dataset:
      name: SCIDOCS
      type: SCIDOCS
      split: test
    metrics:
      - type: ndcg@10
        value: 0.15789
  - task:
      type: retrieval
    dataset:
      name: FiQA2018
      type: FiQA2018
      split: test
    metrics:
      - type: ndcg@10
        value: 0.33974
  - task:
      type: retrieval
    dataset:
      name: HotpotQA
      type: HotpotQA
      split: test
    metrics:
      - type: ndcg@10
        value: 0.51818
  - task:
      type: retrieval
    dataset:
      name: ArguAna
      type: ArguAna
      split: test
    metrics:
      - type: ndcg@10
        value: 0.47797
  - task:
      type: retrieval
    dataset:
      name: NFCorpus
      type: NFCorpus
      split: test
    metrics:
      - type: ndcg@10
        value: 0.28443
  - task:
      type: retrieval
    dataset:
      name: SciFact
      type: SciFact
      split: test
    metrics:
      - type: ndcg@10
        value: 0.60626
  - task:
      type: retrieval
    dataset:
      name: TRECCOVID
      type: TRECCOVID
      split: test
    metrics:
      - type: ndcg@10
        value: 0.77495
---

# SentenceTransformer based on answerdotai/ModernBERT-large

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.


I finetune ModernBERT-base using script from offical repo [train_st.py](https://github.com/AnswerDotAI/ModernBERT/blob/main/examples/train_st.py) on a RTX 4090 GPU with the only change of setting mini-batch size of `CachedMultipleNegativesRankingLoss` to 64. Training for 1 epoch takes less than 2 hours.

The mini-batch size of GradCache should not change model performnace, but the finetuned model performs better than that recorded in the paper. 

Training logs can be found here: https://api.wandb.ai/links/joe32140/ekuauaao.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) <!-- at revision f87846cf8be76fceb18718f0245d18c8e6571215 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("joe32140/ModernBERT-large-msmarco")
# Run inference
sentences = [
    'what county is hayden in',
    "Hayden is a city in Kootenai County, Idaho, United States. Located in the northern portion of the state, just north of Coeur d'Alene, its population was 13,294 at the 2010 census.",
    "According to the United States Census Bureau, the city has a total area of 9.61 square miles (24.89 km2), of which 9.60 square miles (24.86 km2) is land and 0.01 square miles (0.03 km2) is water. It lies at the southwestern end of Hayden Lake, and the elevation of the city is 2,287 feet (697 m) above sea level. Hayden is located on U.S. Route 95 at the junction of Route 41. It is also four miles (6 km) north of Interstate 90 and Coeur d'Alene. The Coeur d'Alene airport is northwest of Hayden.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Dataset: `msmarco-co-condenser-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| **cosine_accuracy** | **0.994** |

#### Retrieval tasks compared to original numbers in the paper

|               	| ModernBERT-base 	| ModernBERT-base (ours) 	| ModernBERT-large 	| ModernBERT-large (ours) 	|
|:------------------|------------------|-------------------------|-------------------|--------------------------|
|    NFCorpus   	| 23.7            	| 26.66                  	| 26.2             	| 28.44                   	|
|    SciFact    	| 57.0            	| 61.64                  	| 60.4             	| 63.66                   	|
|   TREC-Covid  	| 72.1            	| 71.43                  	| 74.1             	| 77.49                   	|
|      FiQA     	| 28.8            	| 30.73                  	| 33.1             	| 34.35                   	|
|    ArguAna    	| 35.7            	| 46.38                  	| 38.2             	| 47.79                   	|
|    SciDocs    	| 12.5            	| 13.67                  	| 13.8             	| 15.78                   	|
| FEVER         	| 59.9            	| 65.7                   	| 62.7             	| 68.2                    	|
| Climate-FEVER 	| 23.6            	| 22.6                   	| 20.5             	| 22.9                    	|
|   MLDR - OOD  	| 27.4            	| 30.58                  	| 34.3             	| 38.99                   	|
<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1

* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                            | positive                                                                            | negative                                                                            |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.26 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 79.14 tokens</li><li>max: 222 tokens</li></ul> | <ul><li>min: 24 tokens</li><li>mean: 80.09 tokens</li><li>max: 436 tokens</li></ul> |
* Samples:
  | query                                              | positive                                                                                                                                                                                                                                                                                                                               | negative                                                                                                                                                                                                                                                                                                                                                                                                                  |
  |:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what is the meaning of menu planning</code>  | <code>Menu planning is the selection of a menu for an event. Such as picking out the dinner for your wedding or even a meal at a Birthday Party. Menu planning is when you are preparing a calendar of meals and you have to sit down and decide what meat and veggies you want to serve on each certain day.</code>                   | <code>Menu Costs. In economics, a menu cost is the cost to a firm resulting from changing its prices. The name stems from the cost of restaurants literally printing new menus, but economists use it to refer to the costs of changing nominal prices in general.</code>                                                                                                                                                 |
  | <code>how old is brett butler</code>               | <code>Brett Butler is 59 years old. To be more precise (and nerdy), the current age as of right now is 21564 days or (even more geeky) 517536 hours. That's a lot of hours!</code>                                                                                                                                                     | <code>Passed in: St. John's, Newfoundland and Labrador, Canada. Passed on: 16/07/2016. Published in the St. John's Telegram. Passed away suddenly at the Health Sciences Centre surrounded by his loving family, on July 16, 2016 Robert (Bobby) Joseph Butler, age 52 years. Predeceased by his special aunt Geri Murrin and uncle Mike Mchugh; grandparents Joe and Margaret Murrin and Jack and Theresa Butler.</code> |
  | <code>when was the last navajo treaty sign?</code> | <code>In Executive Session, Senate of the United States, July 25, 1868. Resolved, (two-thirds of the senators present concurring,) That the Senate advise and consent to the ratification of the treaty between the United States and the Navajo Indians, concluded at Fort Sumner, New Mexico, on the first day of June, 1868.</code> | <code>Share Treaty of Greenville. The Treaty of Greenville was signed August 3, 1795, between the United States, represented by Gen. Anthony Wayne, and chiefs of the Indian tribes located in the Northwest Territory, including the Wyandots, Delawares, Shawnees, Ottawas, Miamis, and others.</code>                                                                                                                  |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1

* Dataset: [msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1) at [84ed2d3](https://huggingface.co/datasets/sentence-transformers/msmarco-co-condenser-margin-mse-sym-mnrl-mean-v1/tree/84ed2d35626f617d890bd493b4d6db69a741e0e2)
* Size: 11,662,655 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                           | positive                                                                            | negative                                                                            |
  |:--------|:--------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                          | string                                                                              | string                                                                              |
  | details | <ul><li>min: 4 tokens</li><li>mean: 9.2 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 80.44 tokens</li><li>max: 241 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 80.38 tokens</li><li>max: 239 tokens</li></ul> |
* Samples:
  | query                                                 | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
  |:------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what county is holly springs nc in</code>       | <code>Holly Springs, North Carolina. Holly Springs is a town in Wake County, North Carolina, United States. As of the 2010 census, the town population was 24,661, over 2½ times its population in 2000. Contents.</code>                                                                                                                                                                                                                                                                                                                                                 | <code>The Mt. Holly Springs Park & Resort. One of the numerous trolley routes that carried people around the county at the turn of the century was the Carlisle & Mt. Holly Railway Company. The “Holly Trolley” as it came to be known was put into service by Patricio Russo and made its first run on May 14, 1901.</code>                                                                                                                                                                                                                                                 |
  | <code>how long does nyquil stay in your system</code> | <code>In order to understand exactly how long Nyquil lasts, it is absolutely vital to learn about the various ingredients in the drug. One of the ingredients found in Nyquil is Doxylamine, which is an antihistamine. This specific medication has a biological half-life or 6 to 12 hours. With this in mind, it is possible for the drug to remain in the system for a period of 12 to 24 hours. It should be known that the specifics will depend on a wide variety of different factors, including your age and metabolism.</code>                                   | <code>I confirmed that NyQuil is about 10% alcohol, a higher content than most domestic beers. When I asked about the relatively high proof, I was told that the alcohol dilutes the active ingredients. The alcohol free version is there for customers with addiction issues.. also found that in that version there is twice the amount of DXM. When I asked if I could speak to a chemist or scientist, I was told they didn't have anyone who fit that description there. It’s been eight years since I kicked NyQuil. I've been sober from alcohol for four years.</code> |
  | <code>what are mineral water</code>                   | <code>1 Mineral water – water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2  It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source. Mineral water – water from a mineral spring that contains various minerals, such as salts and sulfur compounds. 2  It comes from a source tapped at one or more bore holes or spring, and originates from a geologically and physically protected underground water source.</code> | <code>Minerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.inerals for Your Body. Drinking mineral water is beneficial to health and well-being. But it is not only the amount of water you drink that is important-what the water contains is even more essential.</code>                                                                                                                                                    |
* Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `learning_rate`: 0.0001
- `num_train_epochs`: 1
- `warmup_ratio`: 0.05
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 512
- `per_device_eval_batch_size`: 512
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0001
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | msmarco-co-condenser-dev_cosine_accuracy |
|:------:|:----:|:-------------:|:----------------------------------------:|
| 0      | 0    | -             | 0.599                                    |
| 0.0041 | 10   | 6.0983        | -                                        |
| 0.0082 | 20   | 4.4588        | -                                        |
| 0.0123 | 30   | 2.2492        | -                                        |
| 0.0164 | 40   | 0.9969        | -                                        |
| 0.0205 | 50   | 0.5272        | -                                        |
| 0.0246 | 60   | 0.3982        | -                                        |
| 0.0287 | 70   | 0.3335        | -                                        |
| 0.0328 | 80   | 0.3024        | -                                        |
| 0.0369 | 90   | 0.2932        | -                                        |
| 0.0410 | 100  | 0.2695        | -                                        |
| 0.0450 | 110  | 0.2574        | -                                        |
| 0.0491 | 120  | 0.2447        | -                                        |
| 0.0532 | 130  | 0.2491        | -                                        |
| 0.0573 | 140  | 0.2318        | -                                        |
| 0.0614 | 150  | 0.2292        | -                                        |
| 0.0655 | 160  | 0.2213        | -                                        |
| 0.0696 | 170  | 0.218         | -                                        |
| 0.0737 | 180  | 0.2234        | -                                        |
| 0.0778 | 190  | 0.2066        | -                                        |
| 0.0819 | 200  | 0.1987        | -                                        |
| 0.0860 | 210  | 0.1978        | -                                        |
| 0.0901 | 220  | 0.2024        | -                                        |
| 0.0942 | 230  | 0.1959        | -                                        |
| 0.0983 | 240  | 0.1804        | -                                        |
| 0.1024 | 250  | 0.1868        | -                                        |
| 0.1065 | 260  | 0.1983        | -                                        |
| 0.1106 | 270  | 0.1641        | -                                        |
| 0.1147 | 280  | 0.1713        | -                                        |
| 0.1188 | 290  | 0.1726        | -                                        |
| 0.1229 | 300  | 0.17          | -                                        |
| 0.1269 | 310  | 0.1783        | -                                        |
| 0.1310 | 320  | 0.1742        | -                                        |
| 0.1351 | 330  | 0.1654        | -                                        |
| 0.1392 | 340  | 0.1663        | -                                        |
| 0.1433 | 350  | 0.1616        | -                                        |
| 0.1474 | 360  | 0.157         | -                                        |
| 0.1515 | 370  | 0.1574        | -                                        |
| 0.1556 | 380  | 0.1529        | -                                        |
| 0.1597 | 390  | 0.1561        | -                                        |
| 0.1638 | 400  | 0.1435        | -                                        |
| 0.1679 | 410  | 0.1555        | -                                        |
| 0.1720 | 420  | 0.1455        | -                                        |
| 0.1761 | 430  | 0.1416        | -                                        |
| 0.1802 | 440  | 0.1407        | -                                        |
| 0.1843 | 450  | 0.138         | -                                        |
| 0.1884 | 460  | 0.1387        | -                                        |
| 0.1925 | 470  | 0.1499        | -                                        |
| 0.1966 | 480  | 0.1372        | -                                        |
| 0.2007 | 490  | 0.1308        | -                                        |
| 0.2048 | 500  | 0.1367        | -                                        |
| 0.2088 | 510  | 0.1324        | -                                        |
| 0.2129 | 520  | 0.1317        | -                                        |
| 0.2170 | 530  | 0.1263        | -                                        |
| 0.2211 | 540  | 0.1209        | -                                        |
| 0.2252 | 550  | 0.1201        | -                                        |
| 0.2293 | 560  | 0.1213        | -                                        |
| 0.2334 | 570  | 0.1329        | -                                        |
| 0.2375 | 580  | 0.1207        | -                                        |
| 0.2416 | 590  | 0.1211        | -                                        |
| 0.2457 | 600  | 0.1164        | -                                        |
| 0.2498 | 610  | 0.1292        | -                                        |
| 0.2539 | 620  | 0.1223        | -                                        |
| 0.2580 | 630  | 0.1237        | -                                        |
| 0.2621 | 640  | 0.1088        | -                                        |
| 0.2662 | 650  | 0.1196        | -                                        |
| 0.2703 | 660  | 0.1209        | -                                        |
| 0.2744 | 670  | 0.1155        | -                                        |
| 0.2785 | 680  | 0.1101        | -                                        |
| 0.2826 | 690  | 0.1127        | -                                        |
| 0.2867 | 700  | 0.1082        | -                                        |
| 0.2907 | 710  | 0.1083        | -                                        |
| 0.2948 | 720  | 0.1132        | -                                        |
| 0.2989 | 730  | 0.1121        | -                                        |
| 0.3030 | 740  | 0.1146        | -                                        |
| 0.3071 | 750  | 0.1088        | -                                        |
| 0.3112 | 760  | 0.0982        | -                                        |
| 0.3153 | 770  | 0.0952        | -                                        |
| 0.3194 | 780  | 0.1034        | -                                        |
| 0.3235 | 790  | 0.1017        | -                                        |
| 0.3276 | 800  | 0.1016        | -                                        |
| 0.3317 | 810  | 0.1054        | -                                        |
| 0.3358 | 820  | 0.1003        | -                                        |
| 0.3399 | 830  | 0.0932        | -                                        |
| 0.3440 | 840  | 0.0997        | -                                        |
| 0.3481 | 850  | 0.0921        | -                                        |
| 0.3522 | 860  | 0.0958        | -                                        |
| 0.3563 | 870  | 0.0973        | -                                        |
| 0.3604 | 880  | 0.0931        | -                                        |
| 0.3645 | 890  | 0.0964        | -                                        |
| 0.3686 | 900  | 0.0982        | -                                        |
| 0.3726 | 910  | 0.0908        | -                                        |
| 0.3767 | 920  | 0.0917        | -                                        |
| 0.3808 | 930  | 0.0857        | -                                        |
| 0.3849 | 940  | 0.0925        | -                                        |
| 0.3890 | 950  | 0.0915        | -                                        |
| 0.3931 | 960  | 0.089         | -                                        |
| 0.3972 | 970  | 0.0876        | -                                        |
| 0.4013 | 980  | 0.0959        | -                                        |
| 0.4054 | 990  | 0.0879        | -                                        |
| 0.4095 | 1000 | 0.0883        | -                                        |
| 0.4136 | 1010 | 0.0824        | -                                        |
| 0.4177 | 1020 | 0.0897        | -                                        |
| 0.4218 | 1030 | 0.0954        | -                                        |
| 0.4259 | 1040 | 0.0815        | -                                        |
| 0.4300 | 1050 | 0.0806        | -                                        |
| 0.4341 | 1060 | 0.0918        | -                                        |
| 0.4382 | 1070 | 0.0851        | -                                        |
| 0.4423 | 1080 | 0.0888        | -                                        |
| 0.4464 | 1090 | 0.0863        | -                                        |
| 0.4505 | 1100 | 0.0856        | -                                        |
| 0.4545 | 1110 | 0.0809        | -                                        |
| 0.4586 | 1120 | 0.085         | -                                        |
| 0.4627 | 1130 | 0.0756        | -                                        |
| 0.4668 | 1140 | 0.0836        | -                                        |
| 0.4709 | 1150 | 0.0815        | -                                        |
| 0.4750 | 1160 | 0.084         | -                                        |
| 0.4791 | 1170 | 0.0751        | -                                        |
| 0.4832 | 1180 | 0.0794        | -                                        |
| 0.4873 | 1190 | 0.0844        | -                                        |
| 0.4914 | 1200 | 0.0835        | -                                        |
| 0.4955 | 1210 | 0.0798        | -                                        |
| 0.4996 | 1220 | 0.0825        | -                                        |
| 0.5037 | 1230 | 0.0796        | -                                        |
| 0.5078 | 1240 | 0.0758        | -                                        |
| 0.5119 | 1250 | 0.0765        | -                                        |
| 0.5160 | 1260 | 0.0806        | -                                        |
| 0.5201 | 1270 | 0.072         | -                                        |
| 0.5242 | 1280 | 0.0775        | -                                        |
| 0.5283 | 1290 | 0.076         | -                                        |
| 0.5324 | 1300 | 0.0767        | -                                        |
| 0.5364 | 1310 | 0.0782        | -                                        |
| 0.5405 | 1320 | 0.07          | -                                        |
| 0.5446 | 1330 | 0.0724        | -                                        |
| 0.5487 | 1340 | 0.0703        | -                                        |
| 0.5528 | 1350 | 0.072         | -                                        |
| 0.5569 | 1360 | 0.0763        | -                                        |
| 0.5610 | 1370 | 0.0703        | -                                        |
| 0.5651 | 1380 | 0.0688        | -                                        |
| 0.5692 | 1390 | 0.0703        | -                                        |
| 0.5733 | 1400 | 0.0659        | -                                        |
| 0.5774 | 1410 | 0.0688        | -                                        |
| 0.5815 | 1420 | 0.0713        | -                                        |
| 0.5856 | 1430 | 0.0722        | -                                        |
| 0.5897 | 1440 | 0.0682        | -                                        |
| 0.5938 | 1450 | 0.07          | -                                        |
| 0.5979 | 1460 | 0.0649        | -                                        |
| 0.6020 | 1470 | 0.0659        | -                                        |
| 0.6061 | 1480 | 0.0675        | -                                        |
| 0.6102 | 1490 | 0.0629        | -                                        |
| 0.6143 | 1500 | 0.0683        | -                                        |
| 0.6183 | 1510 | 0.0687        | -                                        |
| 0.6224 | 1520 | 0.0724        | -                                        |
| 0.6265 | 1530 | 0.0638        | -                                        |
| 0.6306 | 1540 | 0.0709        | -                                        |
| 0.6347 | 1550 | 0.064         | -                                        |
| 0.6388 | 1560 | 0.0646        | -                                        |
| 0.6429 | 1570 | 0.0673        | -                                        |
| 0.6470 | 1580 | 0.0607        | -                                        |
| 0.6511 | 1590 | 0.0671        | -                                        |
| 0.6552 | 1600 | 0.0627        | -                                        |
| 0.6593 | 1610 | 0.0644        | -                                        |
| 0.6634 | 1620 | 0.0629        | -                                        |
| 0.6675 | 1630 | 0.0656        | -                                        |
| 0.6716 | 1640 | 0.0633        | -                                        |
| 0.6757 | 1650 | 0.062         | -                                        |
| 0.6798 | 1660 | 0.0627        | -                                        |
| 0.6839 | 1670 | 0.0583        | -                                        |
| 0.6880 | 1680 | 0.0612        | -                                        |
| 0.6921 | 1690 | 0.066         | -                                        |
| 0.6962 | 1700 | 0.0645        | -                                        |
| 0.7002 | 1710 | 0.0599        | -                                        |
| 0.7043 | 1720 | 0.0552        | -                                        |
| 0.7084 | 1730 | 0.065         | -                                        |
| 0.7125 | 1740 | 0.0614        | -                                        |
| 0.7166 | 1750 | 0.0615        | -                                        |
| 0.7207 | 1760 | 0.0567        | -                                        |
| 0.7248 | 1770 | 0.0528        | -                                        |
| 0.7289 | 1780 | 0.0541        | -                                        |
| 0.7330 | 1790 | 0.0548        | -                                        |
| 0.7371 | 1800 | 0.0568        | -                                        |
| 0.7412 | 1810 | 0.053         | -                                        |
| 0.7453 | 1820 | 0.0603        | -                                        |
| 0.7494 | 1830 | 0.0594        | -                                        |
| 0.7535 | 1840 | 0.0549        | -                                        |
| 0.7576 | 1850 | 0.0601        | -                                        |
| 0.7617 | 1860 | 0.0604        | -                                        |
| 0.7658 | 1870 | 0.0524        | -                                        |
| 0.7699 | 1880 | 0.057         | -                                        |
| 0.7740 | 1890 | 0.057         | -                                        |
| 0.7781 | 1900 | 0.0551        | -                                        |
| 0.7821 | 1910 | 0.0574        | -                                        |
| 0.7862 | 1920 | 0.0555        | -                                        |
| 0.7903 | 1930 | 0.0564        | -                                        |
| 0.7944 | 1940 | 0.052         | -                                        |
| 0.7985 | 1950 | 0.054         | -                                        |
| 0.8026 | 1960 | 0.0573        | -                                        |
| 0.8067 | 1970 | 0.056         | -                                        |
| 0.8108 | 1980 | 0.0503        | -                                        |
| 0.8149 | 1990 | 0.0525        | -                                        |
| 0.8190 | 2000 | 0.0505        | -                                        |
| 0.8231 | 2010 | 0.0547        | -                                        |
| 0.8272 | 2020 | 0.0531        | -                                        |
| 0.8313 | 2030 | 0.0534        | -                                        |
| 0.8354 | 2040 | 0.0542        | -                                        |
| 0.8395 | 2050 | 0.0536        | -                                        |
| 0.8436 | 2060 | 0.0512        | -                                        |
| 0.8477 | 2070 | 0.0508        | -                                        |
| 0.8518 | 2080 | 0.0517        | -                                        |
| 0.8559 | 2090 | 0.0516        | -                                        |
| 0.8600 | 2100 | 0.0558        | -                                        |
| 0.8640 | 2110 | 0.0571        | -                                        |
| 0.8681 | 2120 | 0.0536        | -                                        |
| 0.8722 | 2130 | 0.0561        | -                                        |
| 0.8763 | 2140 | 0.0489        | -                                        |
| 0.8804 | 2150 | 0.0513        | -                                        |
| 0.8845 | 2160 | 0.0455        | -                                        |
| 0.8886 | 2170 | 0.0479        | -                                        |
| 0.8927 | 2180 | 0.0498        | -                                        |
| 0.8968 | 2190 | 0.0523        | -                                        |
| 0.9009 | 2200 | 0.0513        | -                                        |
| 0.9050 | 2210 | 0.049         | -                                        |
| 0.9091 | 2220 | 0.0504        | -                                        |
| 0.9132 | 2230 | 0.0462        | -                                        |
| 0.9173 | 2240 | 0.0469        | -                                        |
| 0.9214 | 2250 | 0.0501        | -                                        |
| 0.9255 | 2260 | 0.046         | -                                        |
| 0.9296 | 2270 | 0.0475        | -                                        |
| 0.9337 | 2280 | 0.0504        | -                                        |
| 0.9378 | 2290 | 0.0483        | -                                        |
| 0.9419 | 2300 | 0.0536        | -                                        |
| 0.9459 | 2310 | 0.0442        | -                                        |
| 0.9500 | 2320 | 0.0499        | -                                        |
| 0.9541 | 2330 | 0.0478        | -                                        |
| 0.9582 | 2340 | 0.0499        | -                                        |
| 0.9623 | 2350 | 0.048         | -                                        |
| 0.9664 | 2360 | 0.0451        | -                                        |
| 0.9705 | 2370 | 0.0501        | -                                        |
| 0.9746 | 2380 | 0.0464        | -                                        |
| 0.9787 | 2390 | 0.0451        | -                                        |
| 0.9828 | 2400 | 0.0413        | -                                        |
| 0.9869 | 2410 | 0.0478        | -                                        |
| 0.9910 | 2420 | 0.0466        | -                                        |
| 0.9951 | 2430 | 0.0515        | -                                        |
| 0.9992 | 2440 | 0.0484        | -                                        |
| 1.0    | 2442 | -             | 0.994                                    |

</details>

### Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.0
- Transformers: 4.48.0.dev0
- PyTorch: 2.4.0
- Accelerate: 1.2.1
- Datasets: 2.21.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### CachedMultipleNegativesRankingLoss
```bibtex
@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->