johnhudzinatr
commited on
Commit
·
c6c4820
1
Parent(s):
8f945ef
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1680.83 +/- 79.83
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24b2bd1fc74ab29dc2736a89128dee1433d9d101edc31d785b3510481a82292d
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f885c798670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f885c798700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f885c798790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f885c798820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f885c7988b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f885c798940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f885c7989d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f885c798a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f885c798af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f885c798b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f885c798c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f885c798ca0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f885c7971e0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675633655964441972,
|
68 |
+
"learning_rate": 0.00073,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABVStz+VVC6/Hei9wFP1IL/Fz2o+KN+cPT1v0DxTwue/oxaNP8IbBb3TA8k/K0AXvxna+L8MPOu9CXw6vzjBgr2Qgri/UAPCu9lEHD8prP68OayEv+tpijvdx9k/mnj7vcWq6j4yVrM+LHqNPszV1j47r3g/p236voMeHT+lW09A6pXhvvy2KsAj6Yc+dC7Bv4wHjT9Oi068fE+SPzZuD75OYWW/oCEoQO6rQr4qcxw/gB+WPuw7JkBN8Bs/wYQYPbW8976LXw2/p1nPPlIWg0DYogvAMlazPix6jT64hhjAeUOtP34wUD9vtgS9nIQfQKk+I0Dp0oA/iiPkPsuWWL+7L40/MKLivP7YPz+XXDPA3BgQvXXXgkCu+TW/kVbfP2kp3D/QUaBAMJX9vc5dxr8nCVU+Tpm1P2z3jz9fP6Y/2KILwDJWsz4seo0+zNXWPmsGvT83gRHAlqjnvoT+EkCXskA9wwiTwB3uJT3fujfAoqmNP+nz072wHDNAM/aHQOAQw76A2YvAFjQaPxXpZzzar48/DapswK0JDz+vbPa+CIKEv3g0ejwqGrM/sNeNv9iiC8AyVrM+LHqNPriGGMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADU5Ic1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqAOJPQAAAAC22Pq/AAAAAMUL3r0AAAAACuP1PwAAAADyjxI+AAAAAPWs9T8AAAAAkkWjvQAAAABMT9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3/4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLYMwj0AAAAAVKbgvwAAAAAJNh88AAAAAB3g/j8AAAAAaL8rvAAAAADQjgBAAAAAAHPyNjwAAAAAKy7rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGOLFTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDTb9y9AAAAAN5t2b8AAAAAS0cSvgAAAAAcHOw/AAAAAPONnrwAAAAALdXsPwAAAADrS4q9AAAAAOIa9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADE8hE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUKEOvgAAAABd6e6/AAAAAI0ihDsAAAAATH35PwAAAABugPW9AAAAAP0G4j8AAAAAMdOPvQAAAABgCue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDi/Zdv8+MAWyUTegDjAF0lEdAqghH/io86nV9lChoBkdAmxUQhje9BmgHTegDaAhHQKoJprYXfqJ1fZQoaAZHQJ1vd/oaDPJoB03oA2gIR0CqCo0vXbuddX2UKGgGR0Cc5/r56+nJaAdN6ANoCEdAqg3jhcZ9/nV9lChoBkdAmYJyZrpJPWgHTegDaAhHQKoUUmHgxah1fZQoaAZHQJlMYIIF/x5oB03oA2gIR0CqFaY3WFvidX2UKGgGR0Ca5nBxgiNbaAdN6ANoCEdAqhaCsfaHsXV9lChoBkdAnRZrvoePrGgHTegDaAhHQKoZz0qYqoZ1fZQoaAZHQJlLQjMV1wJoB03oA2gIR0CqIEjaPCEYdX2UKGgGR0CM+ax1xKg7aAdN6ANoCEdAqiGxtgrpaHV9lChoBkdAmhxLowEhaGgHTegDaAhHQKoijjwx33Z1fZQoaAZHQI6DxWxQizNoB03oA2gIR0CqJejR2KVIdX2UKGgGR0CSNUdGRV6vaAdN6ANoCEdAqixcHObAlHV9lChoBkdAm6c3sC1Z1WgHTegDaAhHQKotsudwvQF1fZQoaAZHQJmb/dAPd2xoB03oA2gIR0CqLpa1kUbldX2UKGgGR0CfJ6vcJtzkaAdN6ANoCEdAqjH3El3QlnV9lChoBkdAlJ6XyAhB7mgHTegDaAhHQKo4f9If8uV1fZQoaAZHQJ4Owb1h9b5oB03oA2gIR0CqOdj2i+L4dX2UKGgGR0Cf09eaa1CxaAdN6ANoCEdAqjq0Rvm5lXV9lChoBkdAmp5TpcHGCWgHTegDaAhHQKo+D5xBE8d1fZQoaAZHQKB3c64lQdloB03oA2gIR0CqRH8brC3xdX2UKGgGR0Cd68rNGEwnaAdN6ANoCEdAqkXR3s5XEXV9lChoBkdAng1CHh0heWgHTegDaAhHQKpGrkS26TZ1fZQoaAZHQJlZ98v24/hoB03oA2gIR0CqSfkUTL4fdX2UKGgGR0Cf5Ird30PIaAdN6ANoCEdAqlCLX+VC5XV9lChoBkdAmKshradtmGgHTegDaAhHQKpR5or4Fid1fZQoaAZHQJuEjIV/MGJoB03oA2gIR0CqUsYzSCvpdX2UKGgGR0CcuybUwztUaAdN6ANoCEdAqlYcZtNzsHV9lChoBkdAmYjEqx1PnGgHTegDaAhHQKpcrbA1vVF1fZQoaAZHQJyGULy+YdBoB03oA2gIR0CqXgCLl3hXdX2UKGgGR0CeEMWo3rD7aAdN6ANoCEdAql7g6wMYuXV9lChoBkdAn7E6hQFcIWgHTegDaAhHQKpiPikwevJ1fZQoaAZHQJ2fqmce8wpoB03oA2gIR0CqaKWdNFjNdX2UKGgGR0CatK/cFhXsaAdN6ANoCEdAqmn9MM7U5XV9lChoBkdAnpURtgrpaGgHTegDaAhHQKpq2+FlCkZ1fZQoaAZHQJ9X3I1cdHVoB03oA2gIR0CqbiiS7oStdX2UKGgGR0CLc1uHerMlaAdN6ANoCEdAqnSjrAxi5XV9lChoBkdAnVEXJT2nKmgHTegDaAhHQKp1+aCtihF1fZQoaAZHQJ3S9Rl6JIloB03oA2gIR0CqdtSsCDEndX2UKGgGR0Cg+1ueJ53UaAdN6ANoCEdAqnoZJiAlOXV9lChoBkdAn+eRaouPFWgHTegDaAhHQKqAmvwEyL11fZQoaAZHQJs++8vmHQBoB03oA2gIR0CqgeuA7PpqdX2UKGgGR0CR1KtTUAktaAdN6ANoCEdAqoLB3V09yXV9lChoBkdAmUhm2TgVGmgHTegDaAhHQKqGFn9Nvfl1fZQoaAZHQJxYxvbXYlJoB03oA2gIR0CqjHyqMm4RdX2UKGgGR0CeIIHqeK8+aAdN6ANoCEdAqo3h93KSxXV9lChoBkdAmlnB4ptrK2gHTegDaAhHQKqOwE+Pikx1fZQoaAZHQJ0/ijesPrhoB03oA2gIR0Cqkg6Yu01JdX2UKGgGR0CfOj2r4nF6aAdN6ANoCEdAqph/fl6qsHV9lChoBkdAlw9D0Yj0MGgHTegDaAhHQKqZ1m29cr11fZQoaAZHQJKEUPWhAW1oB03oA2gIR0CqmrHIyTIOdX2UKGgGR0CXdAOW0JF9aAdN6ANoCEdAqp4SAhB7eHV9lChoBkdAk6TDy8SPEWgHTegDaAhHQKqkivGp++d1fZQoaAZHQJv/SF/QSjBoB03oA2gIR0CqpeHW8RL9dX2UKGgGR0CTCoQHiWE9aAdN6ANoCEdAqqbFOZb6g3V9lChoBkdAlTUOLBKtgmgHTegDaAhHQKqqMguAZsN1fZQoaAZHQIIu4B7u2JBoB03oA2gIR0CqsKHRkVesdX2UKGgGR0B9wkmnfl6raAdN6ANoCEdAqrIUH8jzI3V9lChoBkdAhZ+WvB7/oGgHTegDaAhHQKqy8ACGN711fZQoaAZHQISoj7qIJqtoB03oA2gIR0CqtluUdJardX2UKGgGR0CQa20kWykcaAdN6ANoCEdAqrzMohIOH3V9lChoBkdAmtxr17IDHWgHTegDaAhHQKq+ItMfzSV1fZQoaAZHQJyUbssxwhpoB03oA2gIR0CqvwGus90SdX2UKGgGR0CVHc/R3NcGaAdN6ANoCEdAqsJR7ojfN3V9lChoBkdAlp8VoYekpWgHTegDaAhHQKrJAjoIOYp1fZQoaAZHQJJDehmGucNoB03oA2gIR0CqymeeWfK7dX2UKGgGR0CTSXOU+s5oaAdN6ANoCEdAqstN1r6+FnV9lChoBkdAm8TvfCQ9zWgHTegDaAhHQKrOxb9If8x1fZQoaAZHQI3UpxLkCFNoB03oA2gIR0Cq1TzYNAkcdX2UKGgGR0CWW7m9QGfPaAdN6ANoCEdAqtaXCTEBKnV9lChoBkdAlEzAL3K0U2gHTegDaAhHQKrXenqmj0t1fZQoaAZHQIFnILLIPsloB03oA2gIR0Cq2tlQuVX4dX2UKGgGR0CBa4jTKDChaAdN6ANoCEdAquFo3WFvh3V9lChoBkdAjZiwQtjCpGgHTegDaAhHQKrivMqSX+l1fZQoaAZHQJIqV5KODJ5oB03oA2gIR0Cq45h8hLXddX2UKGgGR0CUKq0OEug6aAdN6ANoCEdAqub5iG34K3V9lChoBkdAkjpWNm16V2gHTegDaAhHQKrtdmpVCHB1fZQoaAZHQJk9OPNmlIpoB03oA2gIR0Cq7tKaPS2IdX2UKGgGR0CRDUw84gieaAdN6ANoCEdAqu+3io86m3V9lChoBkdAlCm9CmdiD2gHTegDaAhHQKrzBwm3OOd1fZQoaAZHQJUq+uhbnoxoB03oA2gIR0Cq+XS3Td+HdX2UKGgGR0CR+0uYhMakaAdN6ANoCEdAqvrEAR02cnV9lChoBkdAmKgotlI3BGgHTegDaAhHQKr7oHlfZ291fZQoaAZHQJbLLuKGcnVoB03oA2gIR0Cq/ueCTUy6dX2UKGgGR0CYn45dGAkLaAdN6ANoCEdAqwVMy57PZHV9lChoBkdAiY3VHvttymgHTegDaAhHQKsGpPepGWl1fZQoaAZHQJXSPlr/KhdoB03oA2gIR0CrB4LcsUZfdX2UKGgGR0CUws0HQhOhaAdN6ANoCEdAqwrOReTmn3V9lChoBkdAfCwZSvTw2GgHTegDaAhHQKsRP8pkPMB1fZQoaAZHQJMu+ySmqHZoB03oA2gIR0CrEozXBguzdX2UKGgGR0CDsRCWu5jIaAdN6ANoCEdAqxNm87IT5HV9lChoBkdAkKel0Lc9GWgHTegDaAhHQKsWryZKFqV1fZQoaAZHQJ2EB1B+nZVoB03oA2gIR0CrHRf7aZhKdX2UKGgGR0CWazGxD9fkaAdN6ANoCEdAqx6JMYdhiXV9lChoBkdAlz2TspoboGgHTegDaAhHQKsfaW9DhLp1fZQoaAZHQJhlUfwI+ntoB03oA2gIR0CrIsqoQ4CIdX2UKGgGR0CcRUQJokAxaAdN6ANoCEdAqykq5Gz8g3V9lChoBkdAkOP3Z00WM2gHTegDaAhHQKsqpFBIFvB1fZQoaAZHQJrY9ZLZi/hoB03oA2gIR0CrK4nBLwnZdX2UKGgGR0CSOHFnqVyFaAdN6ANoCEdAqy9z/ffoBHVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.98,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dfcc5b62a4ea7e654af6de67346f820b6f1cd3e83731614b9477abe5970230a
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e48356accaac22b7a79f236280b0a18c4b879ad6ed7c9c6d2ce32593eccafca
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f885c798670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f885c798700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f885c798790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f885c798820>", "_build": "<function ActorCriticPolicy._build at 0x7f885c7988b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f885c798940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f885c7989d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f885c798a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f885c798af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f885c798b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f885c798c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f885c798ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f885c7971e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675633655964441972, "learning_rate": 0.00073, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/R+uvECNjsoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABVStz+VVC6/Hei9wFP1IL/Fz2o+KN+cPT1v0DxTwue/oxaNP8IbBb3TA8k/K0AXvxna+L8MPOu9CXw6vzjBgr2Qgri/UAPCu9lEHD8prP68OayEv+tpijvdx9k/mnj7vcWq6j4yVrM+LHqNPszV1j47r3g/p236voMeHT+lW09A6pXhvvy2KsAj6Yc+dC7Bv4wHjT9Oi068fE+SPzZuD75OYWW/oCEoQO6rQr4qcxw/gB+WPuw7JkBN8Bs/wYQYPbW8976LXw2/p1nPPlIWg0DYogvAMlazPix6jT64hhjAeUOtP34wUD9vtgS9nIQfQKk+I0Dp0oA/iiPkPsuWWL+7L40/MKLivP7YPz+XXDPA3BgQvXXXgkCu+TW/kVbfP2kp3D/QUaBAMJX9vc5dxr8nCVU+Tpm1P2z3jz9fP6Y/2KILwDJWsz4seo0+zNXWPmsGvT83gRHAlqjnvoT+EkCXskA9wwiTwB3uJT3fujfAoqmNP+nz072wHDNAM/aHQOAQw76A2YvAFjQaPxXpZzzar48/DapswK0JDz+vbPa+CIKEv3g0ejwqGrM/sNeNv9iiC8AyVrM+LHqNPriGGMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADU5Ic1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAqAOJPQAAAAC22Pq/AAAAAMUL3r0AAAAACuP1PwAAAADyjxI+AAAAAPWs9T8AAAAAkkWjvQAAAABMT9+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3/4gtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLYMwj0AAAAAVKbgvwAAAAAJNh88AAAAAB3g/j8AAAAAaL8rvAAAAADQjgBAAAAAAHPyNjwAAAAAKy7rvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGOLFTUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDTb9y9AAAAAN5t2b8AAAAAS0cSvgAAAAAcHOw/AAAAAPONnrwAAAAALdXsPwAAAADrS4q9AAAAAOIa9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADE8hE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAUKEOvgAAAABd6e6/AAAAAI0ihDsAAAAATH35PwAAAABugPW9AAAAAP0G4j8AAAAAMdOPvQAAAABgCue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtDi/Zdv8+MAWyUTegDjAF0lEdAqghH/io86nV9lChoBkdAmxUQhje9BmgHTegDaAhHQKoJprYXfqJ1fZQoaAZHQJ1vd/oaDPJoB03oA2gIR0CqCo0vXbuddX2UKGgGR0Cc5/r56+nJaAdN6ANoCEdAqg3jhcZ9/nV9lChoBkdAmYJyZrpJPWgHTegDaAhHQKoUUmHgxah1fZQoaAZHQJlMYIIF/x5oB03oA2gIR0CqFaY3WFvidX2UKGgGR0Ca5nBxgiNbaAdN6ANoCEdAqhaCsfaHsXV9lChoBkdAnRZrvoePrGgHTegDaAhHQKoZz0qYqoZ1fZQoaAZHQJlLQjMV1wJoB03oA2gIR0CqIEjaPCEYdX2UKGgGR0CM+ax1xKg7aAdN6ANoCEdAqiGxtgrpaHV9lChoBkdAmhxLowEhaGgHTegDaAhHQKoijjwx33Z1fZQoaAZHQI6DxWxQizNoB03oA2gIR0CqJejR2KVIdX2UKGgGR0CSNUdGRV6vaAdN6ANoCEdAqixcHObAlHV9lChoBkdAm6c3sC1Z1WgHTegDaAhHQKotsudwvQF1fZQoaAZHQJmb/dAPd2xoB03oA2gIR0CqLpa1kUbldX2UKGgGR0CfJ6vcJtzkaAdN6ANoCEdAqjH3El3QlnV9lChoBkdAlJ6XyAhB7mgHTegDaAhHQKo4f9If8uV1fZQoaAZHQJ4Owb1h9b5oB03oA2gIR0CqOdj2i+L4dX2UKGgGR0Cf09eaa1CxaAdN6ANoCEdAqjq0Rvm5lXV9lChoBkdAmp5TpcHGCWgHTegDaAhHQKo+D5xBE8d1fZQoaAZHQKB3c64lQdloB03oA2gIR0CqRH8brC3xdX2UKGgGR0Cd68rNGEwnaAdN6ANoCEdAqkXR3s5XEXV9lChoBkdAng1CHh0heWgHTegDaAhHQKpGrkS26TZ1fZQoaAZHQJlZ98v24/hoB03oA2gIR0CqSfkUTL4fdX2UKGgGR0Cf5Ird30PIaAdN6ANoCEdAqlCLX+VC5XV9lChoBkdAmKshradtmGgHTegDaAhHQKpR5or4Fid1fZQoaAZHQJuEjIV/MGJoB03oA2gIR0CqUsYzSCvpdX2UKGgGR0CcuybUwztUaAdN6ANoCEdAqlYcZtNzsHV9lChoBkdAmYjEqx1PnGgHTegDaAhHQKpcrbA1vVF1fZQoaAZHQJyGULy+YdBoB03oA2gIR0CqXgCLl3hXdX2UKGgGR0CeEMWo3rD7aAdN6ANoCEdAql7g6wMYuXV9lChoBkdAn7E6hQFcIWgHTegDaAhHQKpiPikwevJ1fZQoaAZHQJ2fqmce8wpoB03oA2gIR0CqaKWdNFjNdX2UKGgGR0CatK/cFhXsaAdN6ANoCEdAqmn9MM7U5XV9lChoBkdAnpURtgrpaGgHTegDaAhHQKpq2+FlCkZ1fZQoaAZHQJ9X3I1cdHVoB03oA2gIR0CqbiiS7oStdX2UKGgGR0CLc1uHerMlaAdN6ANoCEdAqnSjrAxi5XV9lChoBkdAnVEXJT2nKmgHTegDaAhHQKp1+aCtihF1fZQoaAZHQJ3S9Rl6JIloB03oA2gIR0CqdtSsCDEndX2UKGgGR0Cg+1ueJ53UaAdN6ANoCEdAqnoZJiAlOXV9lChoBkdAn+eRaouPFWgHTegDaAhHQKqAmvwEyL11fZQoaAZHQJs++8vmHQBoB03oA2gIR0CqgeuA7PpqdX2UKGgGR0CR1KtTUAktaAdN6ANoCEdAqoLB3V09yXV9lChoBkdAmUhm2TgVGmgHTegDaAhHQKqGFn9Nvfl1fZQoaAZHQJxYxvbXYlJoB03oA2gIR0CqjHyqMm4RdX2UKGgGR0CeIIHqeK8+aAdN6ANoCEdAqo3h93KSxXV9lChoBkdAmlnB4ptrK2gHTegDaAhHQKqOwE+Pikx1fZQoaAZHQJ0/ijesPrhoB03oA2gIR0Cqkg6Yu01JdX2UKGgGR0CfOj2r4nF6aAdN6ANoCEdAqph/fl6qsHV9lChoBkdAlw9D0Yj0MGgHTegDaAhHQKqZ1m29cr11fZQoaAZHQJKEUPWhAW1oB03oA2gIR0CqmrHIyTIOdX2UKGgGR0CXdAOW0JF9aAdN6ANoCEdAqp4SAhB7eHV9lChoBkdAk6TDy8SPEWgHTegDaAhHQKqkivGp++d1fZQoaAZHQJv/SF/QSjBoB03oA2gIR0CqpeHW8RL9dX2UKGgGR0CTCoQHiWE9aAdN6ANoCEdAqqbFOZb6g3V9lChoBkdAlTUOLBKtgmgHTegDaAhHQKqqMguAZsN1fZQoaAZHQIIu4B7u2JBoB03oA2gIR0CqsKHRkVesdX2UKGgGR0B9wkmnfl6raAdN6ANoCEdAqrIUH8jzI3V9lChoBkdAhZ+WvB7/oGgHTegDaAhHQKqy8ACGN711fZQoaAZHQISoj7qIJqtoB03oA2gIR0CqtluUdJardX2UKGgGR0CQa20kWykcaAdN6ANoCEdAqrzMohIOH3V9lChoBkdAmtxr17IDHWgHTegDaAhHQKq+ItMfzSV1fZQoaAZHQJyUbssxwhpoB03oA2gIR0CqvwGus90SdX2UKGgGR0CVHc/R3NcGaAdN6ANoCEdAqsJR7ojfN3V9lChoBkdAlp8VoYekpWgHTegDaAhHQKrJAjoIOYp1fZQoaAZHQJJDehmGucNoB03oA2gIR0CqymeeWfK7dX2UKGgGR0CTSXOU+s5oaAdN6ANoCEdAqstN1r6+FnV9lChoBkdAm8TvfCQ9zWgHTegDaAhHQKrOxb9If8x1fZQoaAZHQI3UpxLkCFNoB03oA2gIR0Cq1TzYNAkcdX2UKGgGR0CWW7m9QGfPaAdN6ANoCEdAqtaXCTEBKnV9lChoBkdAlEzAL3K0U2gHTegDaAhHQKrXenqmj0t1fZQoaAZHQIFnILLIPsloB03oA2gIR0Cq2tlQuVX4dX2UKGgGR0CBa4jTKDChaAdN6ANoCEdAquFo3WFvh3V9lChoBkdAjZiwQtjCpGgHTegDaAhHQKrivMqSX+l1fZQoaAZHQJIqV5KODJ5oB03oA2gIR0Cq45h8hLXddX2UKGgGR0CUKq0OEug6aAdN6ANoCEdAqub5iG34K3V9lChoBkdAkjpWNm16V2gHTegDaAhHQKrtdmpVCHB1fZQoaAZHQJk9OPNmlIpoB03oA2gIR0Cq7tKaPS2IdX2UKGgGR0CRDUw84gieaAdN6ANoCEdAqu+3io86m3V9lChoBkdAlCm9CmdiD2gHTegDaAhHQKrzBwm3OOd1fZQoaAZHQJUq+uhbnoxoB03oA2gIR0Cq+XS3Td+HdX2UKGgGR0CR+0uYhMakaAdN6ANoCEdAqvrEAR02cnV9lChoBkdAmKgotlI3BGgHTegDaAhHQKr7oHlfZ291fZQoaAZHQJbLLuKGcnVoB03oA2gIR0Cq/ueCTUy6dX2UKGgGR0CYn45dGAkLaAdN6ANoCEdAqwVMy57PZHV9lChoBkdAiY3VHvttymgHTegDaAhHQKsGpPepGWl1fZQoaAZHQJXSPlr/KhdoB03oA2gIR0CrB4LcsUZfdX2UKGgGR0CUws0HQhOhaAdN6ANoCEdAqwrOReTmn3V9lChoBkdAfCwZSvTw2GgHTegDaAhHQKsRP8pkPMB1fZQoaAZHQJMu+ySmqHZoB03oA2gIR0CrEozXBguzdX2UKGgGR0CDsRCWu5jIaAdN6ANoCEdAqxNm87IT5HV9lChoBkdAkKel0Lc9GWgHTegDaAhHQKsWryZKFqV1fZQoaAZHQJ2EB1B+nZVoB03oA2gIR0CrHRf7aZhKdX2UKGgGR0CWazGxD9fkaAdN6ANoCEdAqx6JMYdhiXV9lChoBkdAlz2TspoboGgHTegDaAhHQKsfaW9DhLp1fZQoaAZHQJhlUfwI+ntoB03oA2gIR0CrIsqoQ4CIdX2UKGgGR0CcRUQJokAxaAdN6ANoCEdAqykq5Gz8g3V9lChoBkdAkOP3Z00WM2gHTegDaAhHQKsqpFBIFvB1fZQoaAZHQJrY9ZLZi/hoB03oA2gIR0CrK4nBLwnZdX2UKGgGR0CSOHFnqVyFaAdN6ANoCEdAqy9z/ffoBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba44454c19532f3435cfea046f0ca90070882d345041d2b64954b438b923e4d7
|
3 |
+
size 1091928
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1680.8290413335606, "std_reward": 79.82603093797647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-05T22:44:02.952299"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0777b08fef67475477a6c93efa6bb819082cebf7fede236d12186d358fb0ee9
|
3 |
+
size 2136
|