File size: 5,730 Bytes
8f49fca 0f86d92 8f49fca 0f86d92 8f49fca 0f86d92 8f49fca 0f86d92 8f49fca 0f86d92 8f49fca 0f86d92 0f628be 0f86d92 0f628be 8f49fca 0f86d92 0f628be 0f86d92 0f628be 0f86d92 8f49fca 6279c2b 8f49fca a96d3c6 9688a91 a96d3c6 9688a91 a96d3c6 8f49fca bbd3439 8f49fca bbd3439 8f49fca 0f86d92 8f49fca 0f86d92 8f49fca 0f86d92 66e6002 0f86d92 0962093 0f86d92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
language: de
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- de
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
- robust-speech-event
- mozilla-foundation/common_voice_6_0
model-index:
- name: XLSR Wav2Vec2 German by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice de
type: common_voice
args: de
metrics:
- name: Test WER
type: wer
value: 12.06
- name: Test CER
type: cer
value: 2.92
- name: Test WER (+LM)
type: wer
value: 8.74
- name: Test CER (+LM)
type: cer
value: 2.28
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: de
metrics:
- name: Dev WER
type: wer
value: 32.75
- name: Dev CER
type: cer
value: 13.64
- name: Dev WER (+LM)
type: wer
value: 26.60
- name: Dev CER (+LM)
type: cer
value: 12.58
---
# Wav2Vec2-Large-XLSR-53-German
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
## Usage
The model can be used directly (without a language model) as follows...
Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:
```python
from asrecognition import ASREngine
asr = ASREngine("de", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-german")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
```
| Reference | Prediction |
| ------------- | ------------- |
| ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS |
| ES KOMMT ZUM SHOWDOWN IN GSTAAD. | ES KOMMT ZUG STUNDEDAUTENESTERKT |
| IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPER’S BAZAAR UND MARIE CLAIRE. | IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR |
| FELIPE HAT EINE AUCH FÜR MONARCHEN UNGEWÖHNLICH LANGE TITELLISTE. | FELIPPE HAT EINE AUCH FÜR MONACHEN UNGEWÖHNLICH LANGE TITELLISTE |
| ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET M |
| WAS SOLLS, ICH BIN BEREIT. | WAS SOLL'S ICH BIN BEREIT |
| DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND |
| DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM |
| DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND |
| SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. | SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER |
## Evaluation
1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2021wav2vec2-large-xlsr-53-german,
title={XLSR Wav2Vec2 German by Jonatas Grosman},
author={Grosman, Jonatas},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}},
year={2021}
}
``` |