File size: 5,730 Bytes
8f49fca
 
0f86d92
8f49fca
 
0f86d92
8f49fca
 
 
 
0f86d92
8f49fca
 
 
 
0f86d92
 
8f49fca
 
 
 
0f86d92
8f49fca
 
 
 
 
 
 
 
0f86d92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f628be
0f86d92
 
0f628be
8f49fca
0f86d92
0f628be
0f86d92
 
0f628be
0f86d92
 
8f49fca
 
 
 
 
 
 
6279c2b
 
8f49fca
 
 
 
a96d3c6
 
9688a91
a96d3c6
 
 
 
9688a91
a96d3c6
 
 
 
 
 
8f49fca
 
 
 
 
 
 
 
 
bbd3439
8f49fca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbd3439
 
 
 
 
 
 
 
 
8f49fca
 
 
0f86d92
8f49fca
0f86d92
 
8f49fca
 
0f86d92
66e6002
0f86d92
 
0962093
 
 
 
 
 
 
 
 
 
 
 
 
 
0f86d92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
---
language: de
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- de
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
- robust-speech-event
- mozilla-foundation/common_voice_6_0
model-index:
- name: XLSR Wav2Vec2 German by Jonatas Grosman
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice de
      type: common_voice
      args: de
    metrics:
       - name: Test WER
         type: wer
         value: 12.06
       - name: Test CER
         type: cer
         value: 2.92
       - name: Test WER (+LM)
         type: wer
         value: 8.74
       - name: Test CER (+LM)
         type: cer
         value: 2.28
  - task: 
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: de
    metrics:
       - name: Dev WER
         type: wer
         value: 32.75
       - name: Dev CER
         type: cer
         value: 13.64
       - name: Dev WER (+LM)
         type: wer
         value: 26.60
       - name: Dev CER (+LM)
         type: cer
         value: 12.58
---

# Wav2Vec2-Large-XLSR-53-German

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:

```python
from asrecognition import ASREngine

asr = ASREngine("de", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-german")

audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-german"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS. | ZIEHT EUCH BITTE DRAUSSEN DIE SCHUHE AUS |
| ES KOMMT ZUM SHOWDOWN IN GSTAAD. | ES KOMMT ZUG STUNDEDAUTENESTERKT |
| IHRE FOTOSTRECKEN ERSCHIENEN IN MODEMAGAZINEN WIE DER VOGUE, HARPER’S BAZAAR UND MARIE CLAIRE. | IHRE FOTELSTRECKEN ERSCHIENEN MIT MODEMAGAZINEN WIE DER VALG AT DAS BASIN MA RIQUAIR |
| FELIPE HAT EINE AUCH FÜR MONARCHEN UNGEWÖHNLICH LANGE TITELLISTE. | FELIPPE HAT EINE AUCH FÜR MONACHEN UNGEWÖHNLICH LANGE TITELLISTE |
| ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET. | ER WURDE ZU EHREN DES REICHSKANZLERS OTTO VON BISMARCK ERRICHTET   M |
| WAS SOLLS, ICH BIN BEREIT. | WAS SOLL'S ICH BIN BEREIT |
| DAS INTERNET BESTEHT AUS VIELEN COMPUTERN, DIE MITEINANDER VERBUNDEN SIND. | DAS INTERNET BESTEHT AUS VIELEN COMPUTERN DIE MITEINANDER VERBUNDEN SIND |
| DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM. | DER URANUS IST DER SIEBENTE PLANET IN UNSEREM SONNENSYSTEM |
| DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND. | DIE WAGEN ERHIELTEN EIN EINHEITLICHES ERSCHEINUNGSBILD IN WEISS MIT ROTEM FENSTERBAND |
| SIE WAR DIE COUSINE VON CARL MARIA VON WEBER. | SIE WAR DIE COUSINE VON KARL-MARIA VON WEBER |

## Evaluation

1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset mozilla-foundation/common_voice_6_0 --config de --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

## Citation
If you want to cite this model you can use this:

```bibtex
@misc{grosman2021wav2vec2-large-xlsr-53-german,
  title={XLSR Wav2Vec2 German by Jonatas Grosman},
  author={Grosman, Jonatas},
  publisher={Hugging Face},
  journal={Hugging Face Hub},
  howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-german}},
  year={2021}
}
```