File size: 4,889 Bytes
7b82f32
 
9d23c4b
7b82f32
 
9d23c4b
7b82f32
 
 
 
9d23c4b
7b82f32
 
 
 
9d23c4b
 
7b82f32
 
 
 
9d23c4b
7b82f32
 
 
 
 
 
 
 
9d23c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b82f32
 
9d23c4b
 
 
 
 
 
 
7b82f32
 
 
 
 
 
 
96db374
 
7b82f32
 
 
 
3e66b8a
 
b5385a8
3e66b8a
 
 
 
b5385a8
3e66b8a
 
 
 
 
 
7b82f32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c17858
 
 
 
 
 
 
 
 
 
7b82f32
 
 
9d23c4b
7b82f32
9d23c4b
 
7b82f32
 
9d23c4b
b7d99e6
9d23c4b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language: pl
license: apache-2.0
datasets:
- common_voice
- mozilla-foundation/common_voice_6_0
metrics:
- wer
- cer
tags:
- pl
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
- robust-speech-event
- mozilla-foundation/common_voice_6_0
model-index:
- name: XLSR Wav2Vec2 Polish by Jonatas Grosman
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice pl
      type: common_voice
      args: pl
    metrics:
       - name: Test WER
         type: wer
         value: 14.21
       - name: Test CER
         type: cer
         value: 3.49
       - name: Test WER (+LM)
         type: wer
         value: 10.98
       - name: Test CER (+LM)
         type: cer
         value: 2.93
  - task: 
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: pl
    metrics:
       - name: Test WER
         type: wer
         value: 33.18
       - name: Test CER
         type: cer
         value: 15.92
       - name: Test WER (+LM)
         type: wer
         value: 29.31
       - name: Test CER (+LM)
         type: cer
         value: 15.17
---

# Wav2Vec2-Large-XLSR-53-Polish

Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Polish using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

This model has been fine-tuned thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows...

Using the [ASRecognition](https://github.com/jonatasgrosman/asrecognition) library:

```python
from asrecognition import ASREngine

asr = ASREngine("pl", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-polish")

audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
```

Writing your own inference script:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "pl"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-polish"
SAMPLES = 5

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| """CZY DRZWI BYŁY ZAMKNIĘTE?""" | PRZY DRZWI BYŁY ZAMKNIĘTE |
| GDZIEŻ TU POWÓD DO WYRZUTÓW? | WGDZIEŻ TO POM DO WYRYDÓ |
| """O TEM JEDNAK NIE BYŁO MOWY.""" | O TEM JEDNAK NIE BYŁO MOWY |
| LUBIĘ GO. | LUBIĄ GO |
| — TO MI NIE POMAGA. | TO MNIE NIE POMAGA |
| WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM, Z MIASTA, Z PRAGI. | WCIĄŻ LUDZIE WYSIADAJĄ PRZED ZAMKIEM Z MIASTA Z PRAGI |
| ALE ON WCALE INACZEJ NIE MYŚLAŁ. | ONY MONITCENIE PONACZUŁA NA MASU |
| A WY, CO TAK STOICIE? | A WY CO TAK STOICIE |
| A TEN PRZYRZĄD DO CZEGO SŁUŻY? | A TEN PRZYRZĄD DO CZEGO SŁUŻY |
| NA JUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU. | NAJUTRZEJSZYM KOLOKWIUM BĘDZIE PIĘĆ PYTAŃ OTWARTYCH I TEST WIELOKROTNEGO WYBORU |

## Evaluation

1. To evaluate on `mozilla-foundation/common_voice_6_0` with split `test`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset mozilla-foundation/common_voice_6_0 --config pl --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-polish --dataset speech-recognition-community-v2/dev_data --config pl --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```