File size: 4,095 Bytes
7a478a1 c51a264 7a478a1 7265264 7a478a1 7265264 7a478a1 7265264 7a478a1 7265264 d5df867 20902b6 d5df867 f148549 d5df867 f148549 d5df867 f148549 d5df867 f148549 d5df867 7a478a1 7265264 4f8b703 7265264 4f8b703 7a478a1 4f8b703 7a478a1 60d17cf 0534a4d 60d17cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
language:
- it
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- it
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R Wav2Vec2 Italian by Jonatas Grosman
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: it
metrics:
- name: Test WER
type: wer
value: 9.04
- name: Test CER
type: cer
value: 2.20
- name: Test WER (+LM)
type: wer
value: 6.75
- name: Test CER (+LM)
type: cer
value: 1.76
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: it
metrics:
- name: Dev WER
type: wer
value: 23.38
- name: Dev CER
type: cer
value: 9.41
- name: Dev WER (+LM)
type: wer
value: 15.84
- name: Dev CER (+LM)
type: cer
value: 8.93
---
# XLS-R-1B-ITALIAN
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Italian using the [Common Voice 8](https://huggingface.co/datasets/mozilla-foundation/common_voice_8_0).
When using this model, make sure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) tool, and thanks to the GPU credits generously given by the [OVHcloud](https://www.ovhcloud.com/en/public-cloud/ai-training/) :)
## Usage
Using the [HuggingSound](https://github.com/jonatasgrosman/huggingsound) library:
```python
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-italian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
```
Writing your own inference script:
```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-italian"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
```
## Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset mozilla-foundation/common_voice_8_0 --config it --split test
```
2. To evaluate on `speech-recognition-community-v2/dev_data`
```bash
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{grosman2022wav2vec2-xls-r-1b-italian,
title={XLS-R Wav2Vec2 Italian by Jonatas Grosman},
author={Grosman, Jonatas},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-italian}},
year={2022}
}
``` |