File size: 1,673 Bytes
8b50131 9809d5c 98f7378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- he
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- 'no'
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
- yue
tags:
- audio
- automatic-speech-recognition
license: mit
library_name: ctranslate2
---
# Whisper large-v3 model for CTranslate2
This repository contains the conversion of [whisper-turbo](https://github.com/openai/whisper) to the [CTranslate2](https://github.com/OpenNMT/CTranslate2) model format.
## Example
```python
from huggingface_hub import snapshot_download
from faster_whisper import WhisperModel
repo_id = "jootanehorror/faster-whisper-large-v3-turbo-ct2"
local_dir = "faster-whisper-large-v3-turbo-ct2"
snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type="model")
model = WhisperModel(local_dir, device='cpu', compute_type='int8')
segments, info = model.transcribe("sample.mp3")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
## More information
**For more information about the model, see its [official github page](https://github.com/openai/whisper).** |