jorgealbert
commited on
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 227.00 +/- 70.85
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x787325676dd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x787325676e60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x787325676ef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x787325676f80>", "_build": "<function ActorCriticPolicy._build at 0x787325677010>", "forward": "<function ActorCriticPolicy.forward at 0x7873256770a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x787325677130>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7873256771c0>", "_predict": "<function ActorCriticPolicy._predict at 0x787325677250>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7873256772e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x787325677370>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x787325677400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7872c7a31cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733306172611148081, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPO9Rz6TIxw/1kwQvj6ii77crxU947CmvQAAAAAAAAAAjReJPXGUJ7uyOZO7ll6iPM8SRDzqSIu9AACAPwAAgD9N8zM9UtiAueQUGzi8sAgzt3cmux4sN7cAAIA/AACAP5pIxTw+OcI+5qagPUYtlL41Jko8GUg3PQAAAAAAAAAAOul4Pte7MT6sNLW+PkmhvhswdL0ztQi+AAAAAAAAAAAaYhq92FW7PquJyDziXJa+lzbjvLhrXD0AAAAAAAAAAK0POz5M22Y/mqKdvIpB1L4fxwY+zMGqvQAAAAAAAAAAmtwyPRQor7rsnRM05ilPrzEOpLlN+6azAACAPwAAgD8AIKq75ah6Pxz6Hr0A3qi+EXYjPLKTUL0AAAAAAAAAAAC6pry2j4Q+IAo/PoEQbr7rsn28yvkKvQAAAAAAAAAALQI2vnqunD8t4J2+7fLmvrcsib6Cvlu9AAAAAAAAAAANqL+93KcIvB5BZz4sbtc7RzaQvYYMvDwAAIA/AACAP2ZLGz1og5K8dlIjvfv+iD0pHxQ9J+ievAAAgD8AAIA/M6cKPF6nhD1u2vc9pq4tvs8/aD1aicw9AAAAAAAAAABmtCM94ViPuvU00LhrK3iz6aWiujVN8DcAAIA/AACAP8a2JT4Z4Vk/+iALPk9x674R2WU+wLg5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHImE2cawUyMAWyUS/iMAXSUR0CM3ykmhM8HdX2UKGgGR0BvkR6fJ3gUaAdL/mgIR0CM302RaHKwdX2UKGgGR0ByG+lpGnXNaAdNJgFoCEdAjN/DpcHGCXV9lChoBkdAcprhWo3rEGgHS/JoCEdAjN/+UpuuR3V9lChoBkdAbve7eVLSNWgHTacBaAhHQIzhCrHU+cJ1fZQoaAZHQHKEXR1HOKRoB00yAWgIR0CM4jWwu/UOdX2UKGgGR0Bxg/shPj4paAdNIwFoCEdAjOPLsSkCWHV9lChoBkdAcNC+s5n14GgHS+9oCEdAjOSPF3pwCXV9lChoBkdAcGAuSOinHmgHTRQBaAhHQIzksxj8UEh1fZQoaAZHQHDDoAKfFrFoB018AWgIR0CM5PppN9H+dX2UKGgGR0Bul3R7Z39raAdNDAFoCEdAjOWiYCyQgnV9lChoBkdAcZ6MFEAo5WgHS/hoCEdAjOZCtRvWH3V9lChoBkdAcWy6cRUWEmgHS/hoCEdAjOiS/TLGJnV9lChoBkdAcV7fqX4TK2gHTTMBaAhHQIzo5Gax5cF1fZQoaAZHQHIwruc+aBtoB00YAWgIR0CM6PKUVzp5dX2UKGgGR0Bw+qUSqU/waAdNHAFoCEdAjOmpDE3sHHV9lChoBkdAcUEUS7GvOmgHTQIBaAhHQIzscth/iHZ1fZQoaAZHQG+WkIX0oSdoB00WAWgIR0CM7bPTodMkdX2UKGgGR0BvBg1ejVQRaAdNJQFoCEdAjO83U6PsA3V9lChoBkdAcIIeaa1CxGgHTTYBaAhHQIzxbtmcvuh1fZQoaAZHQG7sSIYWLxZoB01OAWgIR0CM8X+y7f52dX2UKGgGR0By4PQ0GeMAaAdNGAFoCEdAjPKJUYKpk3V9lChoBkdAckxcT8HfM2gHTTQBaAhHQIzyjYkE9uB1fZQoaAZHQHFDtVBD5TJoB00MAWgIR0CM8zDiwSrYdX2UKGgGR0BsCMRUWEbpaAdNIgFoCEdAjPPzqjafz3V9lChoBkdAb9LUWl/H52gHTQEBaAhHQIz0GdNFjNJ1fZQoaAZHQHEgmQr+YMRoB01GAWgIR0CM9ewTM7lrdX2UKGgGR0BvM8euFHrhaAdNMwFoCEdAjPX7/XGwR3V9lChoBkdAcSFVRDTjN2gHTQEBaAhHQIz22yZ8a4t1fZQoaAZHQG45KiwjdHloB00AAWgIR0CM96YF7laKdX2UKGgGR0BwtgDyOJcgaAdNFgFoCEdAjPfyHM2WIHV9lChoBkdAcqPVwgkkbGgHS/1oCEdAjPoQco6S1XV9lChoBkdAcQuBE8aGYmgHTVEBaAhHQIz6YSBbwBp1fZQoaAZHQHH3U9t/FzdoB00AAWgIR0CM+7ouf29MdX2UKGgGR0Bybx4xDb8FaAdNFwFoCEdAjP9uM+/xlXV9lChoBkdAcUIlu3trsWgHS/xoCEdAjQBZBsyi23V9lChoBkdAcWGw6hg3LmgHS/doCEdAjQFUelsP8XV9lChoBkdAcSemZE2HcmgHS+1oCEdAjQFf336AOXV9lChoBkdAchVx2B8QZmgHTRMBaAhHQI0CAv6CUX51fZQoaAZHQHDu9Qfp2U1oB00UAWgIR0CNA3CQ9zOpdX2UKGgGR0ByDlSaVlf7aAdL92gIR0CNBg58Sf16dX2UKGgGR0By77I6r/83aAdNKgFoCEdAjS0qF7D2rXV9lChoBkdAcibxVhkRSWgHS/ZoCEdAjS5rc9GI9HV9lChoBkdAcklj0th/iGgHTQwBaAhHQI0uxx95Qgt1fZQoaAZHQHEkJA+pwS9oB00dAWgIR0CNLsdGy5ZsdX2UKGgGR0BwOrsD4gzQaAdNVAFoCEdAjS+raufVZ3V9lChoBkdAc69SoOx0MmgHTR4BaAhHQI0wr28IzFd1fZQoaAZHQHKaOyu6mO5oB00BAWgIR0CNMbuG9HtndX2UKGgGR0ByCdfkWAPNaAdL/mgIR0CNMo/XXiBHdX2UKGgGR0BtYWIl+mWMaAdNIgFoCEdAjTMb5dnkDXV9lChoBkdAcJ2NZ/0/W2gHTQcBaAhHQI02LwhGH591fZQoaAZHQG0ScU21lXloB0vwaAhHQI03TPQfIS11fZQoaAZHQHBRiZnctXhoB00mAWgIR0CNOM/4ZdfLdX2UKGgGR0BwHJ/BnBciaAdNQwFoCEdAjTkrGrCFbnV9lChoBkdAcbeEbo8p1GgHTT8BaAhHQI06S6MBIWh1fZQoaAZHQHFxgWepXIVoB00WAWgIR0CNO6WAPNFCdX2UKGgGR0BsdPdAPd2xaAdNawFoCEdAjT3BuXNTtXV9lChoBkdAcfprR0EHMWgHTRIBaAhHQI0+BbGFSKp1fZQoaAZHQHDaGMn7YTVoB00wAWgIR0CNP+NJe3QVdX2UKGgGR0Bu76ujh1klaAdNNgFoCEdAjT/qTB68hHV9lChoBkdAcJFMOPNmlWgHTUsBaAhHQI0/7JbMX8B1fZQoaAZHQHEkehPCVKRoB00iAWgIR0CNQB4bCJoCdX2UKGgGR0Bwka6ErXlKaAdNDwFoCEdAjUBKkdmxuHV9lChoBkdAcLDgCOmzjWgHS/xoCEdAjUGl5nlGPXV9lChoBkdAcWBqbjLjgmgHTSgBaAhHQI1CeG0u14R1fZQoaAZHQHJxtWuHN5doB00yAWgIR0CNQ76Uqx1QdX2UKGgGR0BwpL/wRXfZaAdNBQFoCEdAjUThgmZ3LXV9lChoBkdASggkgOjIrGgHS8VoCEdAjUUj/2kBS3V9lChoBkdAbViExIre7GgHS/toCEdAjUVPECNjsnV9lChoBkdAcTsMSsbNr2gHTRwBaAhHQI1IPysjmjl1fZQoaAZHQHD4K2jO9nNoB00sAWgIR0CNSXGFzuF6dX2UKGgGR0Bxw5uLrHENaAdNEgFoCEdAjUpFAmiQDHV9lChoBkdAcbjsE7nxKGgHTQABaAhHQI1LPlEJBxB1fZQoaAZHQHI+6HKwIMVoB0vraAhHQI1L+O4oZyd1fZQoaAZHQHDd3dCVryloB0vyaAhHQI1MJWaMJhR1fZQoaAZHQHEw5k078vVoB00UAWgIR0CNTCQ7tAs1dX2UKGgGR0Bw3gxj8UEgaAdNCgFoCEdAjU1PC2tuDXV9lChoBkdAbtlMuez2OGgHTQUBaAhHQI1NaiM5wOx1fZQoaAZHQHM0xfjS5RVoB0vzaAhHQI1OEPOIInl1fZQoaAZHQHIrrPhQ3xZoB0vwaAhHQI1QJ2fTTfB1fZQoaAZHQHHhSkfs/ptoB01CAWgIR0CNUDiDujREdX2UKGgGR0BurmEGqxTsaAdNHgFoCEdAjVEeglF+eHV9lChoBkdAbNug3974SGgHS/RoCEdAjVHqRuCPIXV9lChoBkdAcHnmyxA0K2gHTQABaAhHQI1SDY287IV1fZQoaAZHQHIWMnuy/sVoB0vzaAhHQI1Ur7O3UhF1fZQoaAZHQHJjzV2A5JdoB004AWgIR0CNVRHp8neBdX2UKGgGR0BuxvEXLvCuaAdNBAFoCEdAjVbW6bvw3HV9lChoBkdAcawSgGr0a2gHS+xoCEdAjVg8yN4qw3V9lChoBkdAcG5MwDeTFGgHS/JoCEdAjViXS0BwM3V9lChoBkdAcWiWtlqagGgHTRcBaAhHQI1Yx6MR6GB1fZQoaAZHQHJ11pGnXNFoB00NAWgIR0CNWSO1fE4vdX2UKGgGR0BwISgxrSE2aAdNBQFoCEdAjVrGDUVi4XV9lChoBkdAcnpW1MM7VGgHTQQBaAhHQI1bgGwA2ht1fZQoaAZHQHAGbGza9K5oB004AWgIR0CNXAWTot+TdX2UKGgGR0BwMsuSOinHaAdL7GgIR0CNXF8pkPMCdX2UKGgGR0BxtQse4kNXaAdNOgFoCEdAjV2JY9xIa3V9lChoBkdAc1c+fAbhnGgHTR0BaAhHQI1evIQvpQl1fZQoaAZHQHF16VQhwERoB00NAWgIR0CNX+938n/ldX2UKGgGR0BwJ+sPrfLtaAdNJwFoCEdAjWBHEl3QlnV9lChoBkdAcP071Iy0r2gHTR8BaAhHQI1grps41gp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x789f1bc0cd30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x789f1bc0cdc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x789f1bc0ce50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x789f1bc0cee0>", "_build": "<function ActorCriticPolicy._build at 0x789f1bc0cf70>", "forward": "<function ActorCriticPolicy.forward at 0x789f1bc0d000>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x789f1bc0d090>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x789f1bc0d120>", "_predict": "<function ActorCriticPolicy._predict at 0x789f1bc0d1b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x789f1bc0d240>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x789f1bc0d2d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x789f1bc0d360>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x789f1bdb6e80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733394786155537069, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqSsjxiNbA/CFf2PX7ikr4Z1xg96CFnPQAAAAAAAAAAgHC5vgvW7z1ux8M9otwdvhM3gbzCk/47AAAAAAAAAAAa5Xq+HbI0vfKhCDu+lNQ5LUqdPvc8QLoAAIA/AACAPxqOND56pU4+qgKwuM7eVr6a0og8lenQvAAAAAAAAAAAkKdQvjtc+bw58Ku7HMlTusXFaj58ASU7AACAPwAAgD9mHl++rDS9PN64yTlOb164lhdMvk4hyrcAAIA/AACAP1qokz0U+Iq6etPAuA34ULNKkpe6VfzaNwAAgD8AAIA/E9BAPq78yLwp6Ys7WxEKuswWMb4wD726AACAPwAAgD/i96K+24UnPyCFXjrGO6a+eRmPvSkrhj0AAAAAAAAAAG3pZL76mCe9OPJWujJ3ELk5I5A+27mVOQAAgD8AAIA/82BKPsg4sLxdbXs7UGzUuXQpHb7BG6K6AACAPwAAgD+NmXA+Kfd1P7WLBT9PIe++DkWePi5LBz4AAAAAAAAAAObsnb2gmRg/7BIAPaLHhb63zZS7U9t2PQAAAAAAAAAAjZipPZFCBT9qTHU9PSOUvsNEIj1G+PS8AAAAAAAAAABmgG88Kue1P+uxcD0EyaK+KNULPZ64MTwAAAAAAAAAADoIfD7JIhc9aq5EukH07bj5sLA+1dsROAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8WJtix3V2MAWyUS/6MAXSUR0CRA9hcJMQFdX2UKGgGR0BhNMoOQQtjaAdN6ANoCEdAkQP2uLaVU3V9lChoBkdAcGJ6Z6Uqx2gHS/poCEdAkQRmoaUA1nV9lChoBkdAbrWbMHKOk2gHTVsBaAhHQJEEbfwZwXJ1fZQoaAZHQHBuZX6qKgtoB00IAWgIR0CRBw7jT8YRdX2UKGgGR0BwXqldkauPaAdL+2gIR0CRB5ujRD1HdX2UKGgGR0BpaQFeOXE7aAdNrAFoCEdAkQyxOk+HJ3V9lChoBkdAcK/u/1xsEmgHTT0BaAhHQJENt69kBjp1fZQoaAZHQHBlsgMc6vJoB00JAWgIR0CRDfpKBd2QdX2UKGgGR0BtDP2mHgxbaAdNBgFoCEdAkQ/CHEdeY3V9lChoBkdAcNo4T9KmK2gHS/ZoCEdAkRCQ5eZ5RnV9lChoBkdAXWwwxnFo+WgHTegDaAhHQJERiTpxFRZ1fZQoaAZHQHA1SEHt4RpoB00DAWgIR0CREqL876pHdX2UKGgGR0BgDtRgqmTDaAdN6ANoCEdAkRS/HLida3V9lChoBkdAW8ViH6/IsGgHTegDaAhHQJEVTnhbW3B1fZQoaAZHQHDeV5OafBhoB00KAWgIR0CRGZa7mMfjdX2UKGgGR0Bt8bTQVsUJaAdL7mgIR0CRTMrUsnRcdX2UKGgGR0BwNK9rXUYsaAdNzgFoCEdAkU06n752yXV9lChoBkdAb/6lUp/gBWgHTQ8BaAhHQJFNj3ta6jF1fZQoaAZHQG71hXbM5fdoB0vvaAhHQJFN5T0g8r91fZQoaAZHQHBfTposZpBoB0vwaAhHQJFOQM+eOGV1fZQoaAZHQG9mWiL2pQ1oB0voaAhHQJFOduuRs/J1fZQoaAZHQG/6R+az/qBoB00lAWgIR0CRTwnMMZxadX2UKGgGR0Bwof/JeVs2aAdNAwFoCEdAkVFo5YHPeHV9lChoBkdAcRSL9uP3jGgHTYQBaAhHQJFU9uwX6691fZQoaAZHQF85n62v0RRoB03oA2gIR0CRVeBEa2nbdX2UKGgGR0BvaSr/82rGaAdNFwFoCEdAkVfzBInSfHV9lChoBkdAbkl1IRRMvmgHTRUBaAhHQJFYTozN2Tx1fZQoaAZHQGvteA/cFhZoB00TAWgIR0CRWJkRjBl+dX2UKGgGR0BwQYAsCkoGaAdNJQFoCEdAkVoeW4Vh1HV9lChoBkdAb4a4hEBsAWgHTQ8BaAhHQJFaHtJFspJ1fZQoaAZHQHJY6xgRbr1oB001AWgIR0CRWvtHhCMQdX2UKGgGR0BZ9ZljEvTPaAdN6ANoCEdAkWCfYODraHV9lChoBkdAbFqHN5dGAmgHTQYBaAhHQJFjnt1IRRN1fZQoaAZHQGCQLPUrkKhoB03oA2gIR0CRZit7KJVKdX2UKGgGR0BwkiKaXrt3aAdL/mgIR0CRZj6jFhoedX2UKGgGR0Bwb908vEjxaAdNAgFoCEdAkWc2GVRk3HV9lChoBkdAYA2fwqiGnGgHTegDaAhHQJFnv2vjfel1fZQoaAZHQG70FF2FFlVoB0vxaAhHQJFoD5i3G4t1fZQoaAZHQHBLimEXcg1oB01tAWgIR0CRaE7zTWoWdX2UKGgGR0BsMi0lZ5iWaAdNKQJoCEdAkWh1S88La3V9lChoBkdAcOJ/Aj6eoWgHTQYBaAhHQJFo53pwCKd1fZQoaAZHQGJ9YIrvsqtoB03oA2gIR0CRao9cKPXDdX2UKGgGR0Bvi/6l+EytaAdNiwFoCEdAkWwsuvllsnV9lChoBkdAcGMpUgjhUGgHTRUBaAhHQJFv2fWcz691fZQoaAZHQHAHoQrc0tRoB00BAWgIR0CRcJvTPSlWdX2UKGgGR0BvTb2L5ylvaAdNBwFoCEdAkXD0gW8AaXV9lChoBkdAcK9U/wAlwGgHTQ8BaAhHQJFzfp9qk/N1fZQoaAZHQFj7EP1+RYBoB03oA2gIR0CRc6K4x1xLdX2UKGgGR0BsC7GDL8rJaAdNMwFoCEdAkXPO5SWJJ3V9lChoBkdAcOfAbyYoiWgHTUcBaAhHQJF1p1FH8TB1fZQoaAZHQFyTVtXPqs5oB03oA2gIR0CRdkEtuk1udX2UKGgGR0B0KUBGQSzxaAdNHgFoCEdAkXZ7r5ZbIXV9lChoBkdAa+ksQNCqqGgHTQUBaAhHQJF3J4SpR411fZQoaAZHQGwLCFCb+cZoB00ZAmgIR0CReL+s5n14dX2UKGgGR0Bx520CzTnaaAdNnwFoCEdAkXmFrRBu43V9lChoBkdAb2q8dxQzlGgHTQkBaAhHQJF7OUPhAGB1fZQoaAZHQHABwuAZsKtoB036AWgIR0CRfCDhLoOhdX2UKGgGR0BwllCPZIxyaAdNJAFoCEdAkXyFxS5y2nV9lChoBkdAbea1aW5Yo2gHS/1oCEdAkX1gmmce83V9lChoBkdAYYsG+K0laGgHTegDaAhHQJF9/g88s+V1fZQoaAZHQG9wEO7QLNRoB00VAWgIR0CRfiITGo73dX2UKGgGR0BwPxHQQcxTaAdNEwFoCEdAkX5KKpDNQnV9lChoBkdAb/8BZpztC2gHS+toCEdAkX7jH4oJA3V9lChoBkdAcB+VqN6w+2gHTQwBaAhHQJF/cneBQN11fZQoaAZHQHC51cyFfzBoB0v2aAhHQJF/8+5e7cx1fZQoaAZHQHBwszImw7loB00dAWgIR0CRgIwd8zAOdX2UKGgGR0BuJ9/J/5LzaAdNDgFoCEdAkYKoX0oSc3V9lChoBkdAcKM0qpcX32gHTQsBaAhHQJGEKaDwpfB1fZQoaAZHQG9PMYMvysloB0v8aAhHQJGE2otL+P11fZQoaAZHQFrHq5LAYYRoB03oA2gIR0CRhVJSBK+SdX2UKGgGR0BvfhXQtz0ZaAdL9GgIR0CRhjfFrEcbdX2UKGgGR0Bwxtri2lVMaAdNAwFoCEdAkYZqLKmsNnV9lChoBkdAa5aYMOPNmmgHTYACaAhHQJGHaoaUA1h1fZQoaAZHQHAPZh8YyftoB00fAWgIR0CRh451vES/dX2UKGgGR0BvAkSCe2/jaAdNZAFoCEdAkYgsH4XXRXV9lChoBkc/936pHZsbemgHS+hoCEdAkYhyL2pQ13V9lChoBkdAb3SdI5HVgGgHTSoBaAhHQJGIxYSxqwh1fZQoaAZHQGr77MgU1yhoB00qAWgIR0CRiVo3Jgb7dX2UKGgGR0BthqWC2+fzaAdNOQFoCEdAkYpcMZxaPnV9lChoBkdAb6F6BRQ792gHS/xoCEdAkYsx5cC5mXV9lChoBkdAW2xy0a6z3WgHTegDaAhHQJGMS/Glyip1fZQoaAZHQEGHHKfWcz9oB0upaAhHQJGMyphnanJ1fZQoaAZHQG6vSZ8a4tpoB00SAWgIR0CRjd8LronsdX2UKGgGR0BwPIarFOwgaAdNEAFoCEdAkY4wLux8lXV9lChoBkdAcDGf/m1YyWgHTTgBaAhHQJGOdAWznih1fZQoaAZHQHAtACr92oxoB00oAWgIR0CRkIpbD/EPdX2UKGgGR0BssmwPiDNAaAdL+GgIR0CRkQ0pmVZ+dX2UKGgGR0BxJWgqVhTgaAdNAwFoCEdAkZEnxBmf5HV9lChoBkdAbm4YAsCkoGgHTRUBaAhHQJGRMQ+UyHp1fZQoaAZHQGsNuoYNy5toB01KAWgIR0CRkdi+L3sYdX2UKGgGR0BwjjfHggoxaAdNCAFoCEdAkZLWKIi1RnV9lChoBkdAcTMBiCrcTWgHTRkBaAhHQJGWPj4pMHt1fZQoaAZHQHEMmcJ+lTFoB00CAWgIR0CRltqHGjsVdX2UKGgGR0BurYBYFJQMaAdNDAFoCEdAkZhiBshxHXV9lChoBkdAIRBTwUg0TGgHS/hoCEdAkZmR+KCQLnV9lChoBkdAbYZ9oexOcmgHTQYBaAhHQJGa2E25xzd1fZQoaAZHQG9TxqoIfKZoB0vraAhHQJGdbch1Tzd1fZQoaAZHQHEizG5tm+VoB00FAWgIR0CRneFQl8gIdX2UKGgGR0Btm0/4ZdfLaAdNGwFoCEdAkZ46Rhc7hnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.001, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad1e5677f3a9c457e976a4ad5a9e1c5c03acf95f6c76bf0acd37c8c850534dc2
|
3 |
+
size 147998
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,13 +45,13 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -77,14 +77,14 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x789f1bc0cd30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x789f1bc0cdc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x789f1bc0ce50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x789f1bc0cee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x789f1bc0cf70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x789f1bc0d000>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x789f1bc0d090>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x789f1bc0d120>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x789f1bc0d1b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x789f1bc0d240>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x789f1bc0d2d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x789f1bc0d360>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x789f1bdb6e80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1733394786155537069,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqSsjxiNbA/CFf2PX7ikr4Z1xg96CFnPQAAAAAAAAAAgHC5vgvW7z1ux8M9otwdvhM3gbzCk/47AAAAAAAAAAAa5Xq+HbI0vfKhCDu+lNQ5LUqdPvc8QLoAAIA/AACAPxqOND56pU4+qgKwuM7eVr6a0og8lenQvAAAAAAAAAAAkKdQvjtc+bw58Ku7HMlTusXFaj58ASU7AACAPwAAgD9mHl++rDS9PN64yTlOb164lhdMvk4hyrcAAIA/AACAP1qokz0U+Iq6etPAuA34ULNKkpe6VfzaNwAAgD8AAIA/E9BAPq78yLwp6Ys7WxEKuswWMb4wD726AACAPwAAgD/i96K+24UnPyCFXjrGO6a+eRmPvSkrhj0AAAAAAAAAAG3pZL76mCe9OPJWujJ3ELk5I5A+27mVOQAAgD8AAIA/82BKPsg4sLxdbXs7UGzUuXQpHb7BG6K6AACAPwAAgD+NmXA+Kfd1P7WLBT9PIe++DkWePi5LBz4AAAAAAAAAAObsnb2gmRg/7BIAPaLHhb63zZS7U9t2PQAAAAAAAAAAjZipPZFCBT9qTHU9PSOUvsNEIj1G+PS8AAAAAAAAAABmgG88Kue1P+uxcD0EyaK+KNULPZ64MTwAAAAAAAAAADoIfD7JIhc9aq5EukH07bj5sLA+1dsROAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8WJtix3V2MAWyUS/6MAXSUR0CRA9hcJMQFdX2UKGgGR0BhNMoOQQtjaAdN6ANoCEdAkQP2uLaVU3V9lChoBkdAcGJ6Z6Uqx2gHS/poCEdAkQRmoaUA1nV9lChoBkdAbrWbMHKOk2gHTVsBaAhHQJEEbfwZwXJ1fZQoaAZHQHBuZX6qKgtoB00IAWgIR0CRBw7jT8YRdX2UKGgGR0BwXqldkauPaAdL+2gIR0CRB5ujRD1HdX2UKGgGR0BpaQFeOXE7aAdNrAFoCEdAkQyxOk+HJ3V9lChoBkdAcK/u/1xsEmgHTT0BaAhHQJENt69kBjp1fZQoaAZHQHBlsgMc6vJoB00JAWgIR0CRDfpKBd2QdX2UKGgGR0BtDP2mHgxbaAdNBgFoCEdAkQ/CHEdeY3V9lChoBkdAcNo4T9KmK2gHS/ZoCEdAkRCQ5eZ5RnV9lChoBkdAXWwwxnFo+WgHTegDaAhHQJERiTpxFRZ1fZQoaAZHQHA1SEHt4RpoB00DAWgIR0CREqL876pHdX2UKGgGR0BgDtRgqmTDaAdN6ANoCEdAkRS/HLida3V9lChoBkdAW8ViH6/IsGgHTegDaAhHQJEVTnhbW3B1fZQoaAZHQHDeV5OafBhoB00KAWgIR0CRGZa7mMfjdX2UKGgGR0Bt8bTQVsUJaAdL7mgIR0CRTMrUsnRcdX2UKGgGR0BwNK9rXUYsaAdNzgFoCEdAkU06n752yXV9lChoBkdAb/6lUp/gBWgHTQ8BaAhHQJFNj3ta6jF1fZQoaAZHQG71hXbM5fdoB0vvaAhHQJFN5T0g8r91fZQoaAZHQHBfTposZpBoB0vwaAhHQJFOQM+eOGV1fZQoaAZHQG9mWiL2pQ1oB0voaAhHQJFOduuRs/J1fZQoaAZHQG/6R+az/qBoB00lAWgIR0CRTwnMMZxadX2UKGgGR0Bwof/JeVs2aAdNAwFoCEdAkVFo5YHPeHV9lChoBkdAcRSL9uP3jGgHTYQBaAhHQJFU9uwX6691fZQoaAZHQF85n62v0RRoB03oA2gIR0CRVeBEa2nbdX2UKGgGR0BvaSr/82rGaAdNFwFoCEdAkVfzBInSfHV9lChoBkdAbkl1IRRMvmgHTRUBaAhHQJFYTozN2Tx1fZQoaAZHQGvteA/cFhZoB00TAWgIR0CRWJkRjBl+dX2UKGgGR0BwQYAsCkoGaAdNJQFoCEdAkVoeW4Vh1HV9lChoBkdAb4a4hEBsAWgHTQ8BaAhHQJFaHtJFspJ1fZQoaAZHQHJY6xgRbr1oB001AWgIR0CRWvtHhCMQdX2UKGgGR0BZ9ZljEvTPaAdN6ANoCEdAkWCfYODraHV9lChoBkdAbFqHN5dGAmgHTQYBaAhHQJFjnt1IRRN1fZQoaAZHQGCQLPUrkKhoB03oA2gIR0CRZit7KJVKdX2UKGgGR0BwkiKaXrt3aAdL/mgIR0CRZj6jFhoedX2UKGgGR0Bwb908vEjxaAdNAgFoCEdAkWc2GVRk3HV9lChoBkdAYA2fwqiGnGgHTegDaAhHQJFnv2vjfel1fZQoaAZHQG70FF2FFlVoB0vxaAhHQJFoD5i3G4t1fZQoaAZHQHBLimEXcg1oB01tAWgIR0CRaE7zTWoWdX2UKGgGR0BsMi0lZ5iWaAdNKQJoCEdAkWh1S88La3V9lChoBkdAcOJ/Aj6eoWgHTQYBaAhHQJFo53pwCKd1fZQoaAZHQGJ9YIrvsqtoB03oA2gIR0CRao9cKPXDdX2UKGgGR0Bvi/6l+EytaAdNiwFoCEdAkWwsuvllsnV9lChoBkdAcGMpUgjhUGgHTRUBaAhHQJFv2fWcz691fZQoaAZHQHAHoQrc0tRoB00BAWgIR0CRcJvTPSlWdX2UKGgGR0BvTb2L5ylvaAdNBwFoCEdAkXD0gW8AaXV9lChoBkdAcK9U/wAlwGgHTQ8BaAhHQJFzfp9qk/N1fZQoaAZHQFj7EP1+RYBoB03oA2gIR0CRc6K4x1xLdX2UKGgGR0BsC7GDL8rJaAdNMwFoCEdAkXPO5SWJJ3V9lChoBkdAcOfAbyYoiWgHTUcBaAhHQJF1p1FH8TB1fZQoaAZHQFyTVtXPqs5oB03oA2gIR0CRdkEtuk1udX2UKGgGR0B0KUBGQSzxaAdNHgFoCEdAkXZ7r5ZbIXV9lChoBkdAa+ksQNCqqGgHTQUBaAhHQJF3J4SpR411fZQoaAZHQGwLCFCb+cZoB00ZAmgIR0CReL+s5n14dX2UKGgGR0Bx520CzTnaaAdNnwFoCEdAkXmFrRBu43V9lChoBkdAb2q8dxQzlGgHTQkBaAhHQJF7OUPhAGB1fZQoaAZHQHABwuAZsKtoB036AWgIR0CRfCDhLoOhdX2UKGgGR0BwllCPZIxyaAdNJAFoCEdAkXyFxS5y2nV9lChoBkdAbea1aW5Yo2gHS/1oCEdAkX1gmmce83V9lChoBkdAYYsG+K0laGgHTegDaAhHQJF9/g88s+V1fZQoaAZHQG9wEO7QLNRoB00VAWgIR0CRfiITGo73dX2UKGgGR0BwPxHQQcxTaAdNEwFoCEdAkX5KKpDNQnV9lChoBkdAb/8BZpztC2gHS+toCEdAkX7jH4oJA3V9lChoBkdAcB+VqN6w+2gHTQwBaAhHQJF/cneBQN11fZQoaAZHQHC51cyFfzBoB0v2aAhHQJF/8+5e7cx1fZQoaAZHQHBwszImw7loB00dAWgIR0CRgIwd8zAOdX2UKGgGR0BuJ9/J/5LzaAdNDgFoCEdAkYKoX0oSc3V9lChoBkdAcKM0qpcX32gHTQsBaAhHQJGEKaDwpfB1fZQoaAZHQG9PMYMvysloB0v8aAhHQJGE2otL+P11fZQoaAZHQFrHq5LAYYRoB03oA2gIR0CRhVJSBK+SdX2UKGgGR0BvfhXQtz0ZaAdL9GgIR0CRhjfFrEcbdX2UKGgGR0Bwxtri2lVMaAdNAwFoCEdAkYZqLKmsNnV9lChoBkdAa5aYMOPNmmgHTYACaAhHQJGHaoaUA1h1fZQoaAZHQHAPZh8YyftoB00fAWgIR0CRh451vES/dX2UKGgGR0BvAkSCe2/jaAdNZAFoCEdAkYgsH4XXRXV9lChoBkc/936pHZsbemgHS+hoCEdAkYhyL2pQ13V9lChoBkdAb3SdI5HVgGgHTSoBaAhHQJGIxYSxqwh1fZQoaAZHQGr77MgU1yhoB00qAWgIR0CRiVo3Jgb7dX2UKGgGR0BthqWC2+fzaAdNOQFoCEdAkYpcMZxaPnV9lChoBkdAb6F6BRQ792gHS/xoCEdAkYsx5cC5mXV9lChoBkdAW2xy0a6z3WgHTegDaAhHQJGMS/Glyip1fZQoaAZHQEGHHKfWcz9oB0upaAhHQJGMyphnanJ1fZQoaAZHQG6vSZ8a4tpoB00SAWgIR0CRjd8LronsdX2UKGgGR0BwPIarFOwgaAdNEAFoCEdAkY4wLux8lXV9lChoBkdAcDGf/m1YyWgHTTgBaAhHQJGOdAWznih1fZQoaAZHQHAtACr92oxoB00oAWgIR0CRkIpbD/EPdX2UKGgGR0BssmwPiDNAaAdL+GgIR0CRkQ0pmVZ+dX2UKGgGR0BxJWgqVhTgaAdNAwFoCEdAkZEnxBmf5HV9lChoBkdAbm4YAsCkoGgHTRUBaAhHQJGRMQ+UyHp1fZQoaAZHQGsNuoYNy5toB01KAWgIR0CRkdi+L3sYdX2UKGgGR0BwjjfHggoxaAdNCAFoCEdAkZLWKIi1RnV9lChoBkdAcTMBiCrcTWgHTRkBaAhHQJGWPj4pMHt1fZQoaAZHQHEMmcJ+lTFoB00CAWgIR0CRltqHGjsVdX2UKGgGR0BurYBYFJQMaAdNDAFoCEdAkZhiBshxHXV9lChoBkdAIRBTwUg0TGgHS/hoCEdAkZmR+KCQLnV9lChoBkdAbYZ9oexOcmgHTQYBaAhHQJGa2E25xzd1fZQoaAZHQG9TxqoIfKZoB0vraAhHQJGdbch1Tzd1fZQoaAZHQHEizG5tm+VoB00FAWgIR0CRneFQl8gIdX2UKGgGR0Btm0/4ZdfLaAdNGwFoCEdAkZ46Rhc7hnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 310,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.001,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cb284f065549a7d3c3fad0c76b9d60fedd6920e9782395a2ca26e53d6e4bf6d
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20a32f9d981850e5f96ca1944162dd9967e82bbeeaba96adcdac50747a10637b
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 226.99776538382358, "std_reward": 70.85209487141513, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-05T10:53:38.707408"}
|