jorgeduardo13 commited on
Commit
535c0e1
·
1 Parent(s): fb42f8d

Model save

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch16-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - beans
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: platzi_vit_model
13
+ results:
14
+ - task:
15
+ name: Image Classification
16
+ type: image-classification
17
+ dataset:
18
+ name: beans
19
+ type: beans
20
+ config: default
21
+ split: validation
22
+ args: default
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 1.0
27
+ - name: F1
28
+ type: f1
29
+ value: 1.0
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # platzi_vit_model
36
+
37
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the beans dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.0061
40
+ - Accuracy: 1.0
41
+ - F1: 1.0
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 0.0003
61
+ - train_batch_size: 8
62
+ - eval_batch_size: 8
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 5
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---:|
72
+ | 0.068 | 3.85 | 500 | 0.0061 | 1.0 | 1.0 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.32.1
78
+ - Pytorch 2.0.1+cu118
79
+ - Datasets 2.14.4
80
+ - Tokenizers 0.13.3