End of training
Browse files- README.md +199 -191
- adapter_model.safetensors +2 -2
- config.json +1 -1
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -1,202 +1,210 @@
|
|
1 |
---
|
2 |
base_model: EleutherAI/pythia-160m-deduped
|
3 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
### Framework versions
|
201 |
|
202 |
-
- PEFT 0.11.1
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
base_model: EleutherAI/pythia-160m-deduped
|
3 |
library_name: peft
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- relora
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: pythia-160m-dolphin-extended
|
11 |
+
results: []
|
12 |
---
|
13 |
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
|
17 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
18 |
+
<details><summary>See axolotl config</summary>
|
19 |
|
20 |
+
axolotl version: `0.4.1`
|
21 |
+
```yaml
|
22 |
+
base_model: EleutherAI/pythia-160m-deduped
|
23 |
+
load_in_8bit:
|
24 |
+
datasets:
|
25 |
+
- path: vicgalle/alpaca-gpt4
|
26 |
+
type: alpaca
|
27 |
+
- path: llamafactory/alpaca_gpt4_en
|
28 |
+
type: alpaca
|
29 |
+
- path: cognitivecomputations/dolphin
|
30 |
+
name: flan1m-alpaca-uncensored
|
31 |
+
type: alpaca
|
32 |
+
shards: 10
|
33 |
+
|
34 |
+
dataset_prepared_path: ds-mega-alpaca
|
35 |
+
#dataset_shard_num: 10
|
36 |
+
chat_template: inst
|
37 |
+
val_set_size: 0.001
|
38 |
+
adapter: lora
|
39 |
+
lora_model_dir:
|
40 |
+
sequence_len: 2048
|
41 |
+
lora_r: 16
|
42 |
+
lora_alpha: 16
|
43 |
+
lora_dropout: 0.05
|
44 |
+
lora_target_modules:
|
45 |
+
- query_key_value
|
46 |
+
lora_target_linear:
|
47 |
+
lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
|
48 |
+
lora_modules_to_save:
|
49 |
+
- embed_in
|
50 |
+
- embed_out
|
51 |
+
- lm_head
|
52 |
+
lora_on_cpu: false
|
53 |
+
# ReLoRA configuration
|
54 |
+
# # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
55 |
+
# relora_steps: # Number of steps per ReLoRA restart
|
56 |
+
# relora_warmup_steps: # Number of per-restart warmup steps
|
57 |
+
# relora_anneal_steps: # Number of anneal steps for each relora cycle
|
58 |
+
# relora_prune_ratio: # threshold for optimizer magnitude when pruning
|
59 |
+
# relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
60 |
+
relora_steps: 600
|
61 |
+
relora_warmup_steps: 10
|
62 |
+
relora_cpu_offload: true
|
63 |
+
wandb_project: pythia
|
64 |
+
wandb_entity:
|
65 |
+
wandb_watch:
|
66 |
+
wandb_name: pythia-160m-dolphin-extended
|
67 |
+
wandb_log_model:
|
68 |
+
output_dir: ./outputs/lora-alpaca-pythia-160m-dolphin-extended
|
69 |
+
gradient_accumulation_steps: 16
|
70 |
+
micro_batch_size: 1
|
71 |
+
num_epochs: 1
|
72 |
+
learning_rate: 0.0006
|
73 |
+
lr_scheduler: cosine_with_restarts
|
74 |
+
#cosine_min_lr_ratio: 0.1
|
75 |
+
train_on_inputs: false
|
76 |
+
group_by_length: false
|
77 |
+
#bf16: auto
|
78 |
+
#fp16: true
|
79 |
+
#tf32: false
|
80 |
+
float16: true
|
81 |
+
flash_attn:
|
82 |
+
xformers_attention: true
|
83 |
+
optimizer: paged_adamw_8bit
|
84 |
+
gpu_memory_limit: 8GiB
|
85 |
+
hub_model_id: jtatman/pythia-160m-dolphin-extended
|
86 |
+
early_stopping_patience: 10
|
87 |
+
#resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
|
88 |
+
auto_resume_from_checkpoints: true
|
89 |
+
local_rank:
|
90 |
+
weight_decay: 0.0
|
91 |
+
#evals_per_epoch: 4
|
92 |
+
eval_steps: 200
|
93 |
+
logging_steps: 1
|
94 |
+
save_steps: 200
|
95 |
+
save_total_limit: 5
|
96 |
+
warmup_steps: 100
|
97 |
+
tokens:
|
98 |
+
- "[INST]"
|
99 |
+
- "[/INST]"
|
100 |
+
|
101 |
+
```
|
102 |
+
|
103 |
+
</details><br>
|
104 |
+
|
105 |
+
# pythia-160m-dolphin-extended
|
106 |
+
|
107 |
+
This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset.
|
108 |
+
It achieves the following results on the evaluation set:
|
109 |
+
- Loss: 5.3345
|
110 |
+
|
111 |
+
## Model description
|
112 |
+
|
113 |
+
More information needed
|
114 |
+
|
115 |
+
## Intended uses & limitations
|
116 |
+
|
117 |
+
More information needed
|
118 |
+
|
119 |
+
## Training and evaluation data
|
120 |
+
|
121 |
+
More information needed
|
122 |
+
|
123 |
+
## Training procedure
|
124 |
+
|
125 |
+
### Training hyperparameters
|
126 |
+
|
127 |
+
The following hyperparameters were used during training:
|
128 |
+
- learning_rate: 0.0006
|
129 |
+
- train_batch_size: 1
|
130 |
+
- eval_batch_size: 1
|
131 |
+
- seed: 42
|
132 |
+
- gradient_accumulation_steps: 16
|
133 |
+
- total_train_batch_size: 16
|
134 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
135 |
+
- lr_scheduler_type: cosine_with_restarts
|
136 |
+
- lr_scheduler_warmup_steps: 100
|
137 |
+
- num_epochs: 1
|
138 |
+
|
139 |
+
### Training results
|
140 |
+
|
141 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
142 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
143 |
+
| 25.9906 | 0.0001 | 1 | 29.5451 |
|
144 |
+
| 30.6876 | 0.0167 | 200 | 26.6061 |
|
145 |
+
| 15.1401 | 0.0334 | 400 | 13.0583 |
|
146 |
+
| 12.521 | 0.0500 | 600 | 10.7947 |
|
147 |
+
| 10.212 | 0.0667 | 800 | 10.5847 |
|
148 |
+
| 9.619 | 0.0834 | 1000 | 10.7486 |
|
149 |
+
| 11.9315 | 0.1001 | 1200 | 10.9554 |
|
150 |
+
| 14.3105 | 0.1167 | 1400 | 10.3818 |
|
151 |
+
| 10.5925 | 0.1334 | 1600 | 10.6131 |
|
152 |
+
| 8.7233 | 0.1501 | 1800 | 10.2776 |
|
153 |
+
| 10.2267 | 0.1668 | 2000 | 10.0918 |
|
154 |
+
| 12.8447 | 0.1835 | 2200 | 10.3923 |
|
155 |
+
| 6.329 | 0.2001 | 2400 | 9.7525 |
|
156 |
+
| 11.7827 | 0.2168 | 2600 | 10.3966 |
|
157 |
+
| 13.6659 | 0.2335 | 2800 | 10.3891 |
|
158 |
+
| 13.903 | 0.2502 | 3000 | 9.6615 |
|
159 |
+
| 7.8718 | 0.2668 | 3200 | 9.7266 |
|
160 |
+
| 11.3558 | 0.2835 | 3400 | 9.2946 |
|
161 |
+
| 7.1755 | 0.3002 | 3600 | 8.7202 |
|
162 |
+
| 8.2074 | 0.3169 | 3800 | 8.5147 |
|
163 |
+
| 7.0288 | 0.3335 | 4000 | 7.2318 |
|
164 |
+
| 9.7612 | 0.3502 | 4200 | 7.5585 |
|
165 |
+
| 4.6886 | 0.3669 | 4400 | 7.0378 |
|
166 |
+
| 11.0692 | 0.3836 | 4600 | 6.6091 |
|
167 |
+
| 4.8223 | 0.4003 | 4800 | 6.7305 |
|
168 |
+
| 6.6341 | 0.4169 | 5000 | 6.5858 |
|
169 |
+
| 11.4613 | 0.4336 | 5200 | 6.5236 |
|
170 |
+
| 12.5182 | 0.4503 | 5400 | 6.4048 |
|
171 |
+
| 11.9191 | 0.4670 | 5600 | 6.4032 |
|
172 |
+
| 7.9905 | 0.4836 | 5800 | 5.7290 |
|
173 |
+
| 10.2991 | 0.5003 | 6000 | 5.7079 |
|
174 |
+
| 4.6978 | 0.5170 | 6200 | 6.0383 |
|
175 |
+
| 5.5322 | 0.5337 | 6400 | 5.8702 |
|
176 |
+
| 8.5077 | 0.5504 | 6600 | 5.6017 |
|
177 |
+
| 5.5676 | 0.5670 | 6800 | 5.8460 |
|
178 |
+
| 5.0347 | 0.5837 | 7000 | 5.7875 |
|
179 |
+
| 5.3157 | 0.6004 | 7200 | 5.4782 |
|
180 |
+
| 6.8562 | 0.6171 | 7400 | 5.7030 |
|
181 |
+
| 5.2433 | 0.6337 | 7600 | 5.5765 |
|
182 |
+
| 4.4054 | 0.6504 | 7800 | 5.6948 |
|
183 |
+
| 6.4413 | 0.6671 | 8000 | 5.4767 |
|
184 |
+
| 4.5828 | 0.6838 | 8200 | 5.6491 |
|
185 |
+
| 4.4912 | 0.7004 | 8400 | 5.7442 |
|
186 |
+
| 5.2625 | 0.7171 | 8600 | 5.5131 |
|
187 |
+
| 5.0451 | 0.7338 | 8800 | 5.6446 |
|
188 |
+
| 4.7825 | 0.7505 | 9000 | 5.5226 |
|
189 |
+
| 4.7226 | 0.7672 | 9200 | 5.4118 |
|
190 |
+
| 6.0616 | 0.7838 | 9400 | 5.2987 |
|
191 |
+
| 5.4928 | 0.8005 | 9600 | 5.2385 |
|
192 |
+
| 6.1017 | 0.8172 | 9800 | 5.4942 |
|
193 |
+
| 5.1683 | 0.8339 | 10000 | 5.2841 |
|
194 |
+
| 4.4583 | 0.8505 | 10200 | 5.4625 |
|
195 |
+
| 5.1028 | 0.8672 | 10400 | 5.4928 |
|
196 |
+
| 4.4848 | 0.8839 | 10600 | 5.3151 |
|
197 |
+
| 4.9981 | 0.9006 | 10800 | 5.3956 |
|
198 |
+
| 4.7987 | 0.9173 | 11000 | 5.2824 |
|
199 |
+
| 4.5008 | 0.9339 | 11200 | 5.6660 |
|
200 |
+
| 4.037 | 0.9506 | 11400 | 5.6325 |
|
201 |
+
| 4.5158 | 0.9673 | 11600 | 5.3345 |
|
202 |
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
### Framework versions
|
205 |
|
206 |
+
- PEFT 0.11.1
|
207 |
+
- Transformers 4.41.2
|
208 |
+
- Pytorch 2.3.0+cu121
|
209 |
+
- Datasets 2.19.1
|
210 |
+
- Tokenizers 0.19.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
|
3 |
+
size 48
|
config.json
CHANGED
@@ -22,7 +22,7 @@
|
|
22 |
"rotary_emb_base": 10000,
|
23 |
"rotary_pct": 0.25,
|
24 |
"tie_word_embeddings": false,
|
25 |
-
"torch_dtype": "
|
26 |
"transformers_version": "4.41.2",
|
27 |
"use_cache": false,
|
28 |
"use_parallel_residual": true,
|
|
|
22 |
"rotary_emb_base": 10000,
|
23 |
"rotary_pct": 0.25,
|
24 |
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
"transformers_version": "4.41.2",
|
27 |
"use_cache": false,
|
28 |
"use_parallel_residual": true,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 324696090
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:918bf4ce4696f96c4eb6666643b83882e350a989ff145826d791c242261dc7e9
|
3 |
size 324696090
|