jtatman commited on
Commit
7687236
·
verified ·
1 Parent(s): 43db002

End of training

Browse files
Files changed (4) hide show
  1. README.md +199 -191
  2. adapter_model.safetensors +2 -2
  3. config.json +1 -1
  4. pytorch_model.bin +1 -1
README.md CHANGED
@@ -1,202 +1,210 @@
1
  ---
2
  base_model: EleutherAI/pythia-160m-deduped
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.11.1
 
 
 
 
 
1
  ---
2
  base_model: EleutherAI/pythia-160m-deduped
3
  library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - relora
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: pythia-160m-dolphin-extended
11
+ results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
 
20
+ axolotl version: `0.4.1`
21
+ ```yaml
22
+ base_model: EleutherAI/pythia-160m-deduped
23
+ load_in_8bit:
24
+ datasets:
25
+ - path: vicgalle/alpaca-gpt4
26
+ type: alpaca
27
+ - path: llamafactory/alpaca_gpt4_en
28
+ type: alpaca
29
+ - path: cognitivecomputations/dolphin
30
+ name: flan1m-alpaca-uncensored
31
+ type: alpaca
32
+ shards: 10
33
+
34
+ dataset_prepared_path: ds-mega-alpaca
35
+ #dataset_shard_num: 10
36
+ chat_template: inst
37
+ val_set_size: 0.001
38
+ adapter: lora
39
+ lora_model_dir:
40
+ sequence_len: 2048
41
+ lora_r: 16
42
+ lora_alpha: 16
43
+ lora_dropout: 0.05
44
+ lora_target_modules:
45
+ - query_key_value
46
+ lora_target_linear:
47
+ lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
48
+ lora_modules_to_save:
49
+ - embed_in
50
+ - embed_out
51
+ - lm_head
52
+ lora_on_cpu: false
53
+ # ReLoRA configuration
54
+ # # Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
55
+ # relora_steps: # Number of steps per ReLoRA restart
56
+ # relora_warmup_steps: # Number of per-restart warmup steps
57
+ # relora_anneal_steps: # Number of anneal steps for each relora cycle
58
+ # relora_prune_ratio: # threshold for optimizer magnitude when pruning
59
+ # relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
60
+ relora_steps: 600
61
+ relora_warmup_steps: 10
62
+ relora_cpu_offload: true
63
+ wandb_project: pythia
64
+ wandb_entity:
65
+ wandb_watch:
66
+ wandb_name: pythia-160m-dolphin-extended
67
+ wandb_log_model:
68
+ output_dir: ./outputs/lora-alpaca-pythia-160m-dolphin-extended
69
+ gradient_accumulation_steps: 16
70
+ micro_batch_size: 1
71
+ num_epochs: 1
72
+ learning_rate: 0.0006
73
+ lr_scheduler: cosine_with_restarts
74
+ #cosine_min_lr_ratio: 0.1
75
+ train_on_inputs: false
76
+ group_by_length: false
77
+ #bf16: auto
78
+ #fp16: true
79
+ #tf32: false
80
+ float16: true
81
+ flash_attn:
82
+ xformers_attention: true
83
+ optimizer: paged_adamw_8bit
84
+ gpu_memory_limit: 8GiB
85
+ hub_model_id: jtatman/pythia-160m-dolphin-extended
86
+ early_stopping_patience: 10
87
+ #resume_from_checkpoint: outputs/lora-alpaca-pythia-125m/checkpoint-51040
88
+ auto_resume_from_checkpoints: true
89
+ local_rank:
90
+ weight_decay: 0.0
91
+ #evals_per_epoch: 4
92
+ eval_steps: 200
93
+ logging_steps: 1
94
+ save_steps: 200
95
+ save_total_limit: 5
96
+ warmup_steps: 100
97
+ tokens:
98
+ - "[INST]"
99
+ - "[/INST]"
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # pythia-160m-dolphin-extended
106
+
107
+ This model is a fine-tuned version of [EleutherAI/pythia-160m-deduped](https://huggingface.co/EleutherAI/pythia-160m-deduped) on the None dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 5.3345
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 0.0006
129
+ - train_batch_size: 1
130
+ - eval_batch_size: 1
131
+ - seed: 42
132
+ - gradient_accumulation_steps: 16
133
+ - total_train_batch_size: 16
134
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
135
+ - lr_scheduler_type: cosine_with_restarts
136
+ - lr_scheduler_warmup_steps: 100
137
+ - num_epochs: 1
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:------:|:-----:|:---------------:|
143
+ | 25.9906 | 0.0001 | 1 | 29.5451 |
144
+ | 30.6876 | 0.0167 | 200 | 26.6061 |
145
+ | 15.1401 | 0.0334 | 400 | 13.0583 |
146
+ | 12.521 | 0.0500 | 600 | 10.7947 |
147
+ | 10.212 | 0.0667 | 800 | 10.5847 |
148
+ | 9.619 | 0.0834 | 1000 | 10.7486 |
149
+ | 11.9315 | 0.1001 | 1200 | 10.9554 |
150
+ | 14.3105 | 0.1167 | 1400 | 10.3818 |
151
+ | 10.5925 | 0.1334 | 1600 | 10.6131 |
152
+ | 8.7233 | 0.1501 | 1800 | 10.2776 |
153
+ | 10.2267 | 0.1668 | 2000 | 10.0918 |
154
+ | 12.8447 | 0.1835 | 2200 | 10.3923 |
155
+ | 6.329 | 0.2001 | 2400 | 9.7525 |
156
+ | 11.7827 | 0.2168 | 2600 | 10.3966 |
157
+ | 13.6659 | 0.2335 | 2800 | 10.3891 |
158
+ | 13.903 | 0.2502 | 3000 | 9.6615 |
159
+ | 7.8718 | 0.2668 | 3200 | 9.7266 |
160
+ | 11.3558 | 0.2835 | 3400 | 9.2946 |
161
+ | 7.1755 | 0.3002 | 3600 | 8.7202 |
162
+ | 8.2074 | 0.3169 | 3800 | 8.5147 |
163
+ | 7.0288 | 0.3335 | 4000 | 7.2318 |
164
+ | 9.7612 | 0.3502 | 4200 | 7.5585 |
165
+ | 4.6886 | 0.3669 | 4400 | 7.0378 |
166
+ | 11.0692 | 0.3836 | 4600 | 6.6091 |
167
+ | 4.8223 | 0.4003 | 4800 | 6.7305 |
168
+ | 6.6341 | 0.4169 | 5000 | 6.5858 |
169
+ | 11.4613 | 0.4336 | 5200 | 6.5236 |
170
+ | 12.5182 | 0.4503 | 5400 | 6.4048 |
171
+ | 11.9191 | 0.4670 | 5600 | 6.4032 |
172
+ | 7.9905 | 0.4836 | 5800 | 5.7290 |
173
+ | 10.2991 | 0.5003 | 6000 | 5.7079 |
174
+ | 4.6978 | 0.5170 | 6200 | 6.0383 |
175
+ | 5.5322 | 0.5337 | 6400 | 5.8702 |
176
+ | 8.5077 | 0.5504 | 6600 | 5.6017 |
177
+ | 5.5676 | 0.5670 | 6800 | 5.8460 |
178
+ | 5.0347 | 0.5837 | 7000 | 5.7875 |
179
+ | 5.3157 | 0.6004 | 7200 | 5.4782 |
180
+ | 6.8562 | 0.6171 | 7400 | 5.7030 |
181
+ | 5.2433 | 0.6337 | 7600 | 5.5765 |
182
+ | 4.4054 | 0.6504 | 7800 | 5.6948 |
183
+ | 6.4413 | 0.6671 | 8000 | 5.4767 |
184
+ | 4.5828 | 0.6838 | 8200 | 5.6491 |
185
+ | 4.4912 | 0.7004 | 8400 | 5.7442 |
186
+ | 5.2625 | 0.7171 | 8600 | 5.5131 |
187
+ | 5.0451 | 0.7338 | 8800 | 5.6446 |
188
+ | 4.7825 | 0.7505 | 9000 | 5.5226 |
189
+ | 4.7226 | 0.7672 | 9200 | 5.4118 |
190
+ | 6.0616 | 0.7838 | 9400 | 5.2987 |
191
+ | 5.4928 | 0.8005 | 9600 | 5.2385 |
192
+ | 6.1017 | 0.8172 | 9800 | 5.4942 |
193
+ | 5.1683 | 0.8339 | 10000 | 5.2841 |
194
+ | 4.4583 | 0.8505 | 10200 | 5.4625 |
195
+ | 5.1028 | 0.8672 | 10400 | 5.4928 |
196
+ | 4.4848 | 0.8839 | 10600 | 5.3151 |
197
+ | 4.9981 | 0.9006 | 10800 | 5.3956 |
198
+ | 4.7987 | 0.9173 | 11000 | 5.2824 |
199
+ | 4.5008 | 0.9339 | 11200 | 5.6660 |
200
+ | 4.037 | 0.9506 | 11400 | 5.6325 |
201
+ | 4.5158 | 0.9673 | 11600 | 5.3345 |
202
 
203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  ### Framework versions
205
 
206
+ - PEFT 0.11.1
207
+ - Transformers 4.41.2
208
+ - Pytorch 2.3.0+cu121
209
+ - Datasets 2.19.1
210
+ - Tokenizers 0.19.1
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63a4015a2ca3bb5b7e21af9a6e6ec7a8caffe8611725988aa0fac04a7d43a905
3
- size 155717368
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e44ce263e6fd885f50d82ca515b9325375b43ee36ededb75acf161ce88bc2e41
3
+ size 48
config.json CHANGED
@@ -22,7 +22,7 @@
22
  "rotary_emb_base": 10000,
23
  "rotary_pct": 0.25,
24
  "tie_word_embeddings": false,
25
- "torch_dtype": "float16",
26
  "transformers_version": "4.41.2",
27
  "use_cache": false,
28
  "use_parallel_residual": true,
 
22
  "rotary_emb_base": 10000,
23
  "rotary_pct": 0.25,
24
  "tie_word_embeddings": false,
25
+ "torch_dtype": "bfloat16",
26
  "transformers_version": "4.41.2",
27
  "use_cache": false,
28
  "use_parallel_residual": true,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:58ae4f6f629b1234f21c5695b8c594a4cadb4b3b1deabcfb70aeb603d6258107
3
  size 324696090
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:918bf4ce4696f96c4eb6666643b83882e350a989ff145826d791c242261dc7e9
3
  size 324696090