juancavallotti
commited on
Commit
·
b2986f0
1
Parent(s):
de4c93b
update model card README.md
Browse files
README.md
CHANGED
@@ -1,10 +1,94 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
4 |
|
5 |
-
|
6 |
-
* The steps and ingredients of the `recipe_nlg` dataset.
|
7 |
-
* Food-related books found on project gutenberg.
|
8 |
-
* Food blogs scraped from the internet.
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
model-index:
|
7 |
+
- name: roberta-base-culinary-finetuned
|
8 |
+
results: []
|
9 |
+
---
|
10 |
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
+
# roberta-base-culinary-finetuned
|
|
|
|
|
|
|
15 |
|
16 |
+
This model was trained from scratch on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0657
|
19 |
+
- F1: 0.9929
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 2e-05
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 4
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
50 |
+
| 0.1803 | 0.11 | 500 | 0.1939 | 0.9611 |
|
51 |
+
| 0.1543 | 0.22 | 1000 | 0.1364 | 0.9669 |
|
52 |
+
| 0.1213 | 0.32 | 1500 | 0.1487 | 0.9728 |
|
53 |
+
| 0.1079 | 0.43 | 2000 | 0.0855 | 0.9773 |
|
54 |
+
| 0.0975 | 0.54 | 2500 | 0.0844 | 0.9831 |
|
55 |
+
| 0.0855 | 0.65 | 3000 | 0.0785 | 0.9831 |
|
56 |
+
| 0.0844 | 0.76 | 3500 | 0.0679 | 0.9857 |
|
57 |
+
| 0.0793 | 0.86 | 4000 | 0.0489 | 0.9890 |
|
58 |
+
| 0.0864 | 0.97 | 4500 | 0.0399 | 0.9903 |
|
59 |
+
| 0.049 | 1.08 | 5000 | 0.0528 | 0.9890 |
|
60 |
+
| 0.0353 | 1.19 | 5500 | 0.0635 | 0.9877 |
|
61 |
+
| 0.0321 | 1.3 | 6000 | 0.0542 | 0.9903 |
|
62 |
+
| 0.0311 | 1.41 | 6500 | 0.0559 | 0.9896 |
|
63 |
+
| 0.0315 | 1.51 | 7000 | 0.0736 | 0.9857 |
|
64 |
+
| 0.04 | 1.62 | 7500 | 0.0648 | 0.9909 |
|
65 |
+
| 0.0265 | 1.73 | 8000 | 0.0608 | 0.9909 |
|
66 |
+
| 0.0443 | 1.84 | 8500 | 0.0617 | 0.9883 |
|
67 |
+
| 0.0443 | 1.95 | 9000 | 0.0555 | 0.9896 |
|
68 |
+
| 0.0235 | 2.05 | 9500 | 0.0608 | 0.9903 |
|
69 |
+
| 0.0139 | 2.16 | 10000 | 0.0613 | 0.9922 |
|
70 |
+
| 0.0126 | 2.27 | 10500 | 0.0739 | 0.9903 |
|
71 |
+
| 0.0164 | 2.38 | 11000 | 0.0679 | 0.9903 |
|
72 |
+
| 0.0172 | 2.49 | 11500 | 0.0606 | 0.9922 |
|
73 |
+
| 0.0175 | 2.59 | 12000 | 0.0442 | 0.9942 |
|
74 |
+
| 0.01 | 2.7 | 12500 | 0.0661 | 0.9916 |
|
75 |
+
| 0.0059 | 2.81 | 13000 | 0.0659 | 0.9929 |
|
76 |
+
| 0.0216 | 2.92 | 13500 | 0.0504 | 0.9929 |
|
77 |
+
| 0.0123 | 3.03 | 14000 | 0.0584 | 0.9929 |
|
78 |
+
| 0.0047 | 3.14 | 14500 | 0.0573 | 0.9929 |
|
79 |
+
| 0.0123 | 3.24 | 15000 | 0.0511 | 0.9935 |
|
80 |
+
| 0.0027 | 3.35 | 15500 | 0.0579 | 0.9942 |
|
81 |
+
| 0.0025 | 3.46 | 16000 | 0.0602 | 0.9935 |
|
82 |
+
| 0.0051 | 3.57 | 16500 | 0.0598 | 0.9935 |
|
83 |
+
| 0.0044 | 3.68 | 17000 | 0.0617 | 0.9929 |
|
84 |
+
| 0.0061 | 3.78 | 17500 | 0.0634 | 0.9935 |
|
85 |
+
| 0.0048 | 3.89 | 18000 | 0.0672 | 0.9929 |
|
86 |
+
| 0.0078 | 4.0 | 18500 | 0.0657 | 0.9929 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.18.0
|
92 |
+
- Pytorch 1.11.0+cu113
|
93 |
+
- Datasets 2.1.0
|
94 |
+
- Tokenizers 0.12.1
|