juancopi81
commited on
Commit
·
e3eb0ae
1
Parent(s):
034577e
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: js-fake-bach-epochs50
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# js-fake-bach-epochs50
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9888
|
20 |
+
- Accuracy: 0.0005
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0006058454513356471
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 32
|
42 |
+
- seed: 1
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- lr_scheduler_warmup_ratio: 0.01
|
46 |
+
- num_epochs: 50
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
52 |
+
| 1.3512 | 1.25 | 315 | 0.8371 | 0.0003 |
|
53 |
+
| 0.8149 | 2.51 | 630 | 0.7684 | 0.0006 |
|
54 |
+
| 0.7601 | 3.76 | 945 | 0.7187 | 0.0004 |
|
55 |
+
| 0.7186 | 5.02 | 1260 | 0.6903 | 0.0002 |
|
56 |
+
| 0.679 | 6.27 | 1575 | 0.6563 | 0.0005 |
|
57 |
+
| 0.6419 | 7.53 | 1890 | 0.6292 | 0.0001 |
|
58 |
+
| 0.6073 | 8.78 | 2205 | 0.5949 | 0.0006 |
|
59 |
+
| 0.575 | 10.04 | 2520 | 0.5828 | 0.0001 |
|
60 |
+
| 0.5425 | 11.29 | 2835 | 0.5696 | 0.0003 |
|
61 |
+
| 0.5174 | 12.55 | 3150 | 0.5609 | 0.0007 |
|
62 |
+
| 0.4933 | 13.8 | 3465 | 0.5576 | 0.0004 |
|
63 |
+
| 0.4696 | 15.06 | 3780 | 0.5661 | 0.0002 |
|
64 |
+
| 0.4423 | 16.31 | 4095 | 0.5708 | 0.0007 |
|
65 |
+
| 0.4196 | 17.57 | 4410 | 0.5780 | 0.0006 |
|
66 |
+
| 0.398 | 18.82 | 4725 | 0.5820 | 0.0009 |
|
67 |
+
| 0.374 | 20.08 | 5040 | 0.6099 | 0.0003 |
|
68 |
+
| 0.3452 | 21.33 | 5355 | 0.6230 | 0.0006 |
|
69 |
+
| 0.3256 | 22.59 | 5670 | 0.6386 | 0.0005 |
|
70 |
+
| 0.3047 | 23.84 | 5985 | 0.6462 | 0.0003 |
|
71 |
+
| 0.2812 | 25.1 | 6300 | 0.6789 | 0.0003 |
|
72 |
+
| 0.2582 | 26.35 | 6615 | 0.7053 | 0.0007 |
|
73 |
+
| 0.2406 | 27.61 | 6930 | 0.7199 | 0.0006 |
|
74 |
+
| 0.2237 | 28.86 | 7245 | 0.7399 | 0.0006 |
|
75 |
+
| 0.204 | 30.12 | 7560 | 0.7729 | 0.0006 |
|
76 |
+
| 0.1873 | 31.37 | 7875 | 0.7960 | 0.0004 |
|
77 |
+
| 0.1725 | 32.63 | 8190 | 0.8231 | 0.0005 |
|
78 |
+
| 0.1609 | 33.88 | 8505 | 0.8493 | 0.0004 |
|
79 |
+
| 0.1479 | 35.14 | 8820 | 0.8707 | 0.0003 |
|
80 |
+
| 0.1361 | 36.39 | 9135 | 0.8931 | 0.0003 |
|
81 |
+
| 0.1273 | 37.65 | 9450 | 0.9095 | 0.0003 |
|
82 |
+
| 0.12 | 38.9 | 9765 | 0.9339 | 0.0005 |
|
83 |
+
| 0.1129 | 40.16 | 10080 | 0.9444 | 0.0004 |
|
84 |
+
| 0.1062 | 41.41 | 10395 | 0.9626 | 0.0006 |
|
85 |
+
| 0.1027 | 42.67 | 10710 | 0.9669 | 0.0006 |
|
86 |
+
| 0.0994 | 43.92 | 11025 | 0.9713 | 0.0005 |
|
87 |
+
| 0.0955 | 45.18 | 11340 | 0.9830 | 0.0005 |
|
88 |
+
| 0.0939 | 46.43 | 11655 | 0.9855 | 0.0005 |
|
89 |
+
| 0.0924 | 47.69 | 11970 | 0.9884 | 0.0005 |
|
90 |
+
| 0.0916 | 48.94 | 12285 | 0.9888 | 0.0005 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.29.1
|
96 |
+
- Pytorch 2.0.0+cu118
|
97 |
+
- Datasets 2.12.0
|
98 |
+
- Tokenizers 0.13.3
|