File size: 2,283 Bytes
dcbffb0
 
de0b412
 
dcbffb0
de0b412
7c57eda
 
de0b412
 
dcbffb0
de0b412
dcbffb0
 
 
 
 
 
de0b412
dcbffb0
de0b412
dcbffb0
db16ad3
 
dcbffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db16ad3
dcbffb0
 
 
 
 
 
 
 
 
 
 
 
 
 
db16ad3
 
 
 
dcbffb0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---

library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper-squeezeformer-NSQU-whisper
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper-squeezeformer-NSQU-whisper

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the LibriSpeech dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1511
- Wer: 6.8035

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05

- train_batch_size: 20

- eval_batch_size: 8

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- lr_scheduler_warmup_steps: 2500
- training_steps: 30000

- mixed_precision_training: Native AMP



### Training results



| Training Loss | Epoch | Step  | Validation Loss | Wer      |

|:-------------:|:-----:|:-----:|:---------------:|:--------:|

| 4.8718        | 1.0   | 2500  | 3.8609          | 111.8590 |

| 2.5628        | 2.0   | 5000  | 0.2978          | 15.6193  |

| 0.1698        | 3.0   | 7500  | 0.2218          | 11.0906  |

| 0.0867        | 4.0   | 10000 | 0.2011          | 10.1891  |

| 0.1697        | 5.0   | 12500 | 0.1641          | 8.9851   |

| 0.0993        | 6.0   | 15000 | 0.1553          | 7.8039   |

| 0.0651        | 7.0   | 17500 | 0.1555          | 7.2448   |

| 0.0468        | 8.0   | 20000 | 0.1569          | 7.1497   |

| 0.2168        | 9.0   | 22500 | 0.1509          | 7.0507   |

| 0.1467        | 10.0  | 25000 | 0.1494          | 6.9671   |

| 0.1113        | 11.0  | 27500 | 0.1493          | 6.7597   |

| 0.0914        | 12.0  | 30000 | 0.1511          | 6.8035   |





### Framework versions



- Transformers 4.45.2

- Pytorch 2.4.0

- Datasets 3.1.0

- Tokenizers 0.20.0