jungnerd commited on
Commit
970c277
·
verified ·
1 Parent(s): 6feddd4

Training completed!

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert-base-uncased
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: distilbert-base-uncased-finetuned-emotion
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-uncased-finetuned-emotion
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2212
23
+ - Accuracy: 0.922
24
+ - F1: 0.9219
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 64
45
+ - eval_batch_size: 64
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 2
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
55
+ | 0.8495 | 1.0 | 250 | 0.3211 | 0.9025 | 0.9012 |
56
+ | 0.2526 | 2.0 | 500 | 0.2212 | 0.922 | 0.9219 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.44.2
62
+ - Pytorch 2.5.0+cu121
63
+ - Datasets 3.1.0
64
+ - Tokenizers 0.19.1