Upload pipeline.py
Browse files- pipeline.py +99 -0
pipeline.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import paddle
|
20 |
+
|
21 |
+
from ppdiffusers import DiffusionPipeline, ImagePipelineOutput
|
22 |
+
|
23 |
+
|
24 |
+
class CustomPipeline(DiffusionPipeline):
|
25 |
+
r"""
|
26 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
27 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
28 |
+
|
29 |
+
Parameters:
|
30 |
+
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
|
31 |
+
scheduler ([`SchedulerMixin`]):
|
32 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
|
33 |
+
[`DDPMScheduler`], or [`DDIMScheduler`].
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, unet, scheduler):
|
37 |
+
super().__init__()
|
38 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
39 |
+
|
40 |
+
@paddle.no_grad()
|
41 |
+
def __call__(
|
42 |
+
self,
|
43 |
+
batch_size: int = 1,
|
44 |
+
generator: Optional[paddle.Generator] = None,
|
45 |
+
num_inference_steps: int = 50,
|
46 |
+
output_type: Optional[str] = "pil",
|
47 |
+
return_dict: bool = True,
|
48 |
+
**kwargs,
|
49 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
50 |
+
r"""
|
51 |
+
Args:
|
52 |
+
batch_size (`int`, *optional*, defaults to 1):
|
53 |
+
The number of images to generate.
|
54 |
+
generator (`paddle.Generator`, *optional*):
|
55 |
+
A paddle generator to make generation deterministic.
|
56 |
+
eta (`float`, *optional*, defaults to 0.0):
|
57 |
+
The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
|
58 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
59 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
60 |
+
expense of slower inference.
|
61 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
62 |
+
The output format of the generate image. Choose between
|
63 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
64 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
|
69 |
+
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
|
70 |
+
generated images.
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Sample gaussian noise to begin loop
|
74 |
+
image = paddle.randn(
|
75 |
+
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size),
|
76 |
+
generator=generator,
|
77 |
+
)
|
78 |
+
|
79 |
+
# set step values
|
80 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
81 |
+
|
82 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
83 |
+
# 1. predict noise model_output
|
84 |
+
model_output = self.unet(image, t).sample
|
85 |
+
|
86 |
+
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
87 |
+
# eta corresponds to η in paper and should be between [0, 1]
|
88 |
+
# do x_t -> x_t-1
|
89 |
+
image = self.scheduler.step(model_output, t, image).prev_sample
|
90 |
+
|
91 |
+
image = (image / 2 + 0.5).clip(0, 1)
|
92 |
+
image = image.cast("float32").transpose([0, 2, 3, 1]).numpy()
|
93 |
+
if output_type == "pil":
|
94 |
+
image = self.numpy_to_pil(image)
|
95 |
+
|
96 |
+
if not return_dict:
|
97 |
+
return (image,)
|
98 |
+
|
99 |
+
return ImagePipelineOutput(images=image), "This is a test"
|