File size: 2,028 Bytes
56c4a09 558a679 56c4a09 558a679 56c4a09 558a679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
base_model: cardiffnlp/twitter-roberta-base-sentiment-latest
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: undersampled-review-clf
results: []
datasets:
- justina/yelp_boba_reviews
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# undersampled-review-clf
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on
[justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset. Undersampling techniques were used to optimize the model for predicting
Yelp review ratings.
It achieves the following results on the evaluation set:
- Loss: 0.4412
- F1 Macro: 0.7799
- Aucpr Macro: 0.8286
- Accuracy: 0.8464
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|
| 0.9348 | 1.22 | 100 | 0.7286 | 0.6132 | 0.6244 | 0.6962 |
| 0.7438 | 2.44 | 200 | 0.7857 | 0.6232 | 0.6215 | 0.6735 |
| 0.6275 | 3.66 | 300 | 0.8317 | 0.5976 | 0.6092 | 0.6778 |
| 0.5561 | 4.88 | 400 | 0.8176 | 0.6200 | 0.6238 | 0.6868 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3 |