a2c-AntBulletEnv-v0 / config.json
justinhoang's picture
Initial commit
f8c5357
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f30e8947400>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f30e8947490>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f30e8947520>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f30e89475b0>", "_build": "<function ActorCriticPolicy._build at 0x7f30e8947640>", "forward": "<function ActorCriticPolicy.forward at 0x7f30e89476d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f30e8947760>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f30e89477f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f30e8947880>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f30e8947910>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f30e89479a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f30e8947a30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30e9044940>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690355888051925351, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2p1c3Rpbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qdXN0aW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAILsDr+VY18+GGXYPqRNQD75OAC+pz0YPhVNcb+mWsa+FKuevy2ZLr3bmBe+y6buPuLN1L9aZnc+uYNcPy2TIb+FxVi/JTQbPwGDFT5sOVk/EL6nPxVZA71ox02/npwRPpTxaz8eIBE/+xjBPrXD7b8yzhS/Sj1Svp/GHD/W9dM+Q5nxP/8cM7+jBgm/jvsQP82KtT42xAA/EYZSv1bn6z+z85E/PzO+u1W8FT/wEaU/hMZsP2l3wL6DYn6+auUTP4g3Wz5B1IG/X3iHviRXiz5v4Yq/HiARP/sYwT4q0Qk/TvTivUk2Tj/NjKm9tmRgP/4COT7tVRs/3gYWvogzEr9GACW9cuJBvcKElb8FWYw+d6CcviQsST7iVbY+EF7JPiyKkT+75iG/ZnHlPgIePby5Fn8+V/gYv/mDvD4aALI+b+GKvx4gET/7GME+KtEJP2F8or64OjY/dm66PPhKAD8BrxRAbhesPhHnQz4Hv+k+kFutPRTKSL8CELC/IZaFvAwPkj9cMbK7f3ZuPjnJqD+EJHU/VorTv4YnTT6YJvy8HAYrP3d1kb8CsLC+fG0ZP2/hir8eIBE/+xjBPirRCT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAD/Kr01AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAA+8tPAAAAACbJ/q/AAAAAGymNr0AAAAAinLgPwAAAACrIlQ9AAAAAJxr7T8AAAAA1JaGvQAAAAA6wtu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMN1UtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgCmv3T0AAAAA4l3cvwAAAABlJWU9AAAAABcH4j8AAAAAFq8yvAAAAAB2sPM/AAAAAGcPurwAAAAAWanivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGOyDDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAYHvW9AAAAADQ59L8AAAAAGJZNPAAAAADTUfM/AAAAADnhSr0AAAAA/4DmPwAAAABqoWC7AAAAAIdL578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADp9T20AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsraKPQAAAABDzNy/AAAAAF8y1rkAAAAAUKUAQAAAAAAWjeQ9AAAAAENy3z8AAAAAjI1JPQAAAAA+8eS/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIlWGr+5vtOMAWyUTegDjAF0lEdApJU5cZ9/jXV9lChoBkdAikJWOp84P2gHTegDaAhHQKSVqOFQEZB1fZQoaAZHQJCfOKEWZZ1oB03oA2gIR0Ckl/TollbvdX2UKGgGR0CNIEMG5c1PaAdN6ANoCEdApJm3HWBjF3V9lChoBkdAkHg42OyVwGgHTegDaAhHQKSgPRgqmTF1fZQoaAZHQI72kI1LrX1oB03oA2gIR0CkoLEd/8VIdX2UKGgGR0CLaBb9If8uaAdN6ANoCEdApKKpq0tyxXV9lChoBkdAkSoBoAXEZWgHTegDaAhHQKSkOhdMTOB1fZQoaAZHQJIRtZpztC1oB03oA2gIR0CkqqHk92X+dX2UKGgGR0CRlcAVwgkkaAdN6ANoCEdApKsUsUZeiXV9lChoBkdAkP9SBPKuCGgHTegDaAhHQKStO9aEBbR1fZQoaAZHQHRNh8c+7lJoB03oA2gIR0CkrwHQQcxTdX2UKGgGR0CCphDZUT+OaAdN6ANoCEdApLXzz5GjK3V9lChoBkdAkw03003wTmgHTegDaAhHQKS2bFzdUKl1fZQoaAZHQJMr4rkKeCloB03oA2gIR0CkuJ7OVxCIdX2UKGgGR0CTQApKBd2QaAdN6ANoCEdApLqkYEW69XV9lChoBkdAkzQEpVjqfWgHTegDaAhHQKTBnpfx+a11fZQoaAZHQJHWegkC3gFoB03oA2gIR0CkwhV1W8yvdX2UKGgGR0CSuO61stTUaAdN6ANoCEdApMRgpF1B+nV9lChoBkdAkvmHfl6qsGgHTegDaAhHQKTGF9qk/KR1fZQoaAZHQI/oIy44Ia9oB03oA2gIR0CkzT+TeO4odX2UKGgGR0CRjkaqS5iFaAdN6ANoCEdApM3EK7ZnMHV9lChoBkdAkvZiE6DGtWgHTegDaAhHQKTP/ymygPF1fZQoaAZHQILjcnmaH9FoB03oA2gIR0Ck0b+9i+cpdX2UKGgGR0CS06gW8AaOaAdN6ANoCEdApNjdd9lVcXV9lChoBkdAkx6oPf8/EGgHTegDaAhHQKTZVFCLMs91fZQoaAZHQJTophfBvaVoB03oA2gIR0Ck23b5uZTidX2UKGgGR0CU3XUiY9gXaAdN6ANoCEdApN06ews5GXV9lChoBkdAlSqQCKaXr2gHTegDaAhHQKTkTQ4S6Dp1fZQoaAZHQJK0YYixFApoB03oA2gIR0Ck5MAHNX5ndX2UKGgGR0CSRINrj5sTaAdN6ANoCEdApObSAWi1zHV9lChoBkdAkzwwccU/OmgHTegDaAhHQKTotPSDyvt1fZQoaAZHQJWQ1I+W4VhoB03oA2gIR0Ck7ym9HtngdX2UKGgGR0CVbp5nUUfxaAdN6ANoCEdApO+XUH6dlXV9lChoBkdAk0z+2AoXsWgHTegDaAhHQKTx1dIoVmB1fZQoaAZHQJJznKQq7RRoB03oA2gIR0Ck84COFQEZdX2UKGgGR0CVmMpZwGW2aAdN6ANoCEdApPojAFgUlHV9lChoBkdAkQsp08vEj2gHTegDaAhHQKT6nVAiV0N1fZQoaAZHQJSdAyWRigFoB03oA2gIR0Ck/LSc9W6tdX2UKGgGR0CUVVOEM9bHaAdN6ANoCEdApP5gPI4lyHV9lChoBkdAkyE1wDNhVmgHTegDaAhHQKUFOL0Bfa91fZQoaAZHQJG+T5+H8CRoB03oA2gIR0ClBabp/wy7dX2UKGgGR0CS8AXJYDDCaAdN6ANoCEdApQejLQokRnV9lChoBkdAkXxyz1K5CmgHTegDaAhHQKUJSiQDFId1fZQoaAZHQJJlVof0VahoB03oA2gIR0ClD8XdbgTAdX2UKGgGR0CTZatBOYY0aAdN6ANoCEdApRA06xPfsXV9lChoBkdAdzdXenAIp2gHTegDaAhHQKUSN0tAcDN1fZQoaAZHQJNAbYkE9uBoB03oA2gIR0ClE/F1jiGWdX2UKGgGR0CTgzgqVhTgaAdN6ANoCEdApRpJhz/6wnV9lChoBkdAk3szj3mFJ2gHTegDaAhHQKUatRQaaTh1fZQoaAZHQJQ8SfBeok1oB03oA2gIR0ClHLSRSxZ/dX2UKGgGR0CQPRccU/OdaAdN6ANoCEdApR5ZnL7oCHV9lChoBkdAk6gx1HOKO2gHTegDaAhHQKUkhjU/fO51fZQoaAZHQJDWJOM2m51oB03oA2gIR0ClJPUDdP+GdX2UKGgGR0CRgokSmIj4aAdN6ANoCEdApSbv5k9U0nV9lChoBkdAlFMAd4mkWWgHTegDaAhHQKUontQ9A5d1fZQoaAZHQJOkMz41xbVoB03oA2gIR0ClLyHQID5kdX2UKGgGR0CRmF+1Bt1qaAdN6ANoCEdApS+P6TGHYnV9lChoBkdAlMvpOi35OGgHTegDaAhHQKUxmEgW8Ad1fZQoaAZHQJUdUBEKE39oB03oA2gIR0ClM0z4L1EmdX2UKGgGR0CT2hTjvNNbaAdN6ANoCEdApTnM/yGzr3V9lChoBkdAk31gJ9iMHmgHTegDaAhHQKU6O8h9srN1fZQoaAZHQHsYiTdLxqhoB03oA2gIR0ClPFBIWgvldX2UKGgGR0CVMAiDujREaAdN6ANoCEdApT4Q0Kqn33V9lChoBkdAlLdP2PDHfmgHTegDaAhHQKVEdqv/zat1fZQoaAZHQICFWr4nF5xoB03oA2gIR0ClROmJWNm2dX2UKGgGR0CUFB7ALy+YaAdN6ANoCEdApUcRaHKwIXV9lChoBkdAk72okzGgjGgHTegDaAhHQKVIxx4ptrN1fZQoaAZHQJMqzhOxjaxoB03oA2gIR0ClT0Qe/5+IdX2UKGgGR0CU5vSwW3z+aAdN6ANoCEdApU+5eC04R3V9lChoBkdAiakkVWS2Y2gHTegDaAhHQKVRyloDgZV1fZQoaAZHQJTpgwIt16poB03oA2gIR0ClU3OxB3RpdX2UKGgGR0CU+pgRK6FuaAdN6ANoCEdApVnOrELpinV9lChoBkdAlc1Y+4b0e2gHTegDaAhHQKVaPv2GqPx1fZQoaAZHQJWlPvphWo5oB03oA2gIR0ClXEG8VYZEdX2UKGgGR0CU7H2oegctaAdN6ANoCEdApV3qrksBhnV9lChoBkdAlq0P2PDHfmgHTegDaAhHQKVkQz3yqdZ1fZQoaAZHQJRmqPp6hQFoB03oA2gIR0ClZK5/smfHdX2UKGgGR0CVPVQmeDnOaAdN6ANoCEdApWavjdYW+HV9lChoBkdAk/C3WnTAnGgHTegDaAhHQKVoeBun/DN1fZQoaAZHQJDbfPUrkKhoB03oA2gIR0ClbtAKWszVdX2UKGgGR0CUJcpSaVlgaAdN6ANoCEdApW87nLaEjHV9lChoBkdAkcPjdLxqf2gHTegDaAhHQKVxUxyn1nN1fZQoaAZHQJVUOAvtdAxoB03oA2gIR0ClcwPJaJQ+dX2UKGgGR0CWNHQoTfzjaAdN6ANoCEdApXmXskY4yXV9lChoBkdAk/C8ENe+mGgHTegDaAhHQKV6EuJ1q351fZQoaAZHQJJbhuNxVABoB03oA2gIR0ClfB6AFxGUdX2UKGgGR0CVFzqMm4RVaAdN6ANoCEdApX3adSVGC3V9lChoBkdAlfesniNsFmgHTegDaAhHQKWEiuCf6Gh1fZQoaAZHQJcLJXT3IuJoB03oA2gIR0ClhPzuOS4fdX2UKGgGR0CVVxtm+TNdaAdN6ANoCEdApYcIFvAGjnV9lChoBkdAlhETcRDkVGgHTegDaAhHQKWIsXv6TGJ1fZQoaAZHQJYxk4lyBCloB03oA2gIR0Clj5oXsPatdX2UKGgGR0CRtwFTNt65aAdN6ANoCEdApZAQLNOdoXV9lChoBkdAk9AOqioKlmgHTegDaAhHQKWSJ3u/k/91fZQoaAZHQJOscFbFCLNoB03oA2gIR0CllAn752yLdX2UKGgGR0CVADKoAGSqaAdN6ANoCEdApZyZc1O0s3V9lChoBkdAlHoiCnP3SWgHTegDaAhHQKWdTcKPXCl1fZQoaAZHQJUSCy8jAzpoB03oA2gIR0CloGtD+irUdX2UKGgGR0CUyEVzZHuraAdN6ANoCEdApaKWc4HX3HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-50-generic-x86_64-with-glibc2.35 # 50-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 10 18:24:29 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}