justinhoang
commited on
Commit
·
176038e
1
Parent(s):
10f6a1b
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.50 +/- 0.25
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa485ed6c85e59055aafaae9fc07a978c659b25eb8ae7190e06d82fa68d7fe3
|
3 |
+
size 108202
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f30e8947b50>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f30e8942040>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690359676346767709,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2p1c3Rpbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qdXN0aW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgkTrvt6+kT8KYIE/RKWSvv0Hzz9hoUM+HWFkv3Me3z7BGtG/oa0Tven7tz858tO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbeUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]]",
|
38 |
+
"desired_goal": "[[-0.45950705 1.1386373 1.0107434 ]\n [-0.28641713 1.6174313 0.1910453 ]\n [-0.89210683 0.43577918 -1.633629 ]\n [-0.03605426 1.4373752 -1.6558295 ]]",
|
39 |
+
"observation": "[[ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYwudvSyUqT2qCHA+5SndPYBv0z0RVpA+EZgFPkj/8L3Cds49aHmMPbgz0D3QhUo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.07668187 0.08280215 0.23440805]\n [ 0.10799006 0.10324001 0.28190663]\n [ 0.1304629 -0.11767441 0.10081245]\n [ 0.06859094 0.10166115 0.19777608]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4nZoWIy6yr+UhpRSlIwBbJRLMowBdJRHQKJLWgUUO/d1fZQoaAZoCWgPQwg/U69bBMbMv5SGlFKUaBVLMmgWR0CiSywMhHLBdX2UKGgGaAloD0MIGcv0S8Rbz7+UhpRSlGgVSzJoFkdAoksHwgDA8HV9lChoBmgJaA9DCGX+0TdpGtW/lIaUUpRoFUsyaBZHQKJK5OBUaQ51fZQoaAZoCWgPQwiwAKYMHNDVv5SGlFKUaBVLMmgWR0CiTFQ2VE/jdX2UKGgGaAloD0MIhH6mXrcI2L+UhpRSlGgVSzJoFkdAokwmDzyz5XV9lChoBmgJaA9DCFad1QJ7TMy/lIaUUpRoFUsyaBZHQKJMAbZOBUd1fZQoaAZoCWgPQwjqP2t+/CXjv5SGlFKUaBVLMmgWR0CiS97SZ0CBdX2UKGgGaAloD0MI/+xHisgw57+UhpRSlGgVSzJoFkdAok1I9s7+1nV9lChoBmgJaA9DCE6XxcTm4+S/lIaUUpRoFUsyaBZHQKJNGuZkTYd1fZQoaAZoCWgPQwgAV7JjIxDhv5SGlFKUaBVLMmgWR0CiTPaTfR/mdX2UKGgGaAloD0MI2pB/ZhAf0b+UhpRSlGgVSzJoFkdAokzTsD4gzXV9lChoBmgJaA9DCED7kSIyrNy/lIaUUpRoFUsyaBZHQKJOP19ORDF1fZQoaAZoCWgPQwj5gas8gbDev5SGlFKUaBVLMmgWR0CiThFbNbC8dX2UKGgGaAloD0MI1xLyQc9m4r+UhpRSlGgVSzJoFkdAok3tDBuXNXV9lChoBmgJaA9DCE8IHXQJh8y/lIaUUpRoFUsyaBZHQKJNyi5/b0x1fZQoaAZoCWgPQwgiUz4EVaPQv5SGlFKUaBVLMmgWR0CiT0rHlwLmdX2UKGgGaAloD0MIDmq/tRMl27+UhpRSlGgVSzJoFkdAok8c0DU3GXV9lChoBmgJaA9DCGufjscM1OW/lIaUUpRoFUsyaBZHQKJO+Nrj5sV1fZQoaAZoCWgPQwhy3ZTyWonqv5SGlFKUaBVLMmgWR0CiTtX4TK1YdX2UKGgGaAloD0MIsTbGTngJ2L+UhpRSlGgVSzJoFkdAolCLO/tY0XV9lChoBmgJaA9DCNDU6xaBseq/lIaUUpRoFUsyaBZHQKJQXW+XZ5B1fZQoaAZoCWgPQwjWG7XC9L3Ov5SGlFKUaBVLMmgWR0CiUDk+HJtBdX2UKGgGaAloD0MIZmt9kdCW7L+UhpRSlGgVSzJoFkdAolAWgBcRlHV9lChoBmgJaA9DCCrgnudPG+a/lIaUUpRoFUsyaBZHQKJRvDrqt5l1fZQoaAZoCWgPQwgEyNCxg8rtv5SGlFKUaBVLMmgWR0CiUY5TAFgVdX2UKGgGaAloD0MI6xotB3oo4r+UhpRSlGgVSzJoFkdAolFqJGe+VXV9lChoBmgJaA9DCEJcOXtnNOq/lIaUUpRoFUsyaBZHQKJRSBClabF1fZQoaAZoCWgPQwha8KKvIM3xv5SGlFKUaBVLMmgWR0CiUuIQ4CIUdX2UKGgGaAloD0MIMsozL4fd3L+UhpRSlGgVSzJoFkdAolK0Ao5PuXV9lChoBmgJaA9DCFWgFoOH6e+/lIaUUpRoFUsyaBZHQKJSj7+DOC51fZQoaAZoCWgPQwgs9SwI5X3hv5SGlFKUaBVLMmgWR0CiUmzqbBoFdX2UKGgGaAloD0MIkNeDSfHx2r+UhpRSlGgVSzJoFkdAolPgOH31z3V9lChoBmgJaA9DCLEZ4IJsWeK/lIaUUpRoFUsyaBZHQKJTsjdHlOp1fZQoaAZoCWgPQwjYnlkSoKbTv5SGlFKUaBVLMmgWR0CiU43sPatcdX2UKGgGaAloD0MI0v4HWKt267+UhpRSlGgVSzJoFkdAolNq/bj943V9lChoBmgJaA9DCEM50a5CSuS/lIaUUpRoFUsyaBZHQKJU2PBBRht1fZQoaAZoCWgPQwiK5gEs8uvgv5SGlFKUaBVLMmgWR0CiVKrvb48EdX2UKGgGaAloD0MIW7OVl/xP2r+UhpRSlGgVSzJoFkdAolSGqHXVb3V9lChoBmgJaA9DCLJ/ngYMkui/lIaUUpRoFUsyaBZHQKJUY8L8aXN1fZQoaAZoCWgPQwi37XvUX6/Sv5SGlFKUaBVLMmgWR0CiVcvPLPlddX2UKGgGaAloD0MIa7sJvml657+UhpRSlGgVSzJoFkdAolWdwzch1XV9lChoBmgJaA9DCI//AkGADNy/lIaUUpRoFUsyaBZHQKJVeWbgCOp1fZQoaAZoCWgPQwiPw2D+Cpnnv5SGlFKUaBVLMmgWR0CiVVZ2ZApsdX2UKGgGaAloD0MIfsNEgxQ837+UhpRSlGgVSzJoFkdAola+skpqh3V9lChoBmgJaA9DCBn/PuPCgey/lIaUUpRoFUsyaBZHQKJWkLZzxPR1fZQoaAZoCWgPQwiuY1xxcVTmv5SGlFKUaBVLMmgWR0CiVmx5cC5mdX2UKGgGaAloD0MITl5kAn6N3b+UhpRSlGgVSzJoFkdAolZJlJ6IFnV9lChoBmgJaA9DCApoImx4eue/lIaUUpRoFUsyaBZHQKJXtCfpUxV1fZQoaAZoCWgPQwhl/WZiuhDev5SGlFKUaBVLMmgWR0CiV4Yrz5GjdX2UKGgGaAloD0MI2dE41O9C9L+UhpRSlGgVSzJoFkdAoldh60IC2nV9lChoBmgJaA9DCJDbL5+smOC/lIaUUpRoFUsyaBZHQKJXPxjJ+2F1fZQoaAZoCWgPQwh8R40JMZfWv5SGlFKUaBVLMmgWR0CiWKlZX+2mdX2UKGgGaAloD0MI3zR9dsD15b+UhpRSlGgVSzJoFkdAolh7YXfqHHV9lChoBmgJaA9DCGDKwAEt3eq/lIaUUpRoFUsyaBZHQKJYVxDst051fZQoaAZoCWgPQwjIDFTGv8/dv5SGlFKUaBVLMmgWR0CiWDQnx8UmdX2UKGgGaAloD0MIRpkNMsnI57+UhpRSlGgVSzJoFkdAolmdjNIK+nV9lChoBmgJaA9DCCzvqgfMQ9y/lIaUUpRoFUsyaBZHQKJZb3wCr951fZQoaAZoCWgPQwijc36K48Dbv5SGlFKUaBVLMmgWR0CiWUsiSq2jdX2UKGgGaAloD0MIsFjDRe7pxL+UhpRSlGgVSzJoFkdAolkoHC4z8HV9lChoBmgJaA9DCNHq5AzFHdu/lIaUUpRoFUsyaBZHQKJa4JEYwZh1fZQoaAZoCWgPQwgkYkok0cvjv5SGlFKUaBVLMmgWR0CiWrLpiZv2dX2UKGgGaAloD0MI7j7HR4sz57+UhpRSlGgVSzJoFkdAolqO/gzguXV9lChoBmgJaA9DCFIst7Qakue/lIaUUpRoFUsyaBZHQKJabHXEqDt1fZQoaAZoCWgPQwgTtTS3Qljkv5SGlFKUaBVLMmgWR0CiXCxJul41dX2UKGgGaAloD0MIgVziyAOR6L+UhpRSlGgVSzJoFkdAolv+cFyJbnV9lChoBmgJaA9DCOqvV1hwP9i/lIaUUpRoFUsyaBZHQKJb2jVQQ+V1fZQoaAZoCWgPQwimme51Ul/Uv5SGlFKUaBVLMmgWR0CiW7d+gDigdX2UKGgGaAloD0MI6njMQGV86L+UhpRSlGgVSzJoFkdAol1QOz6acHV9lChoBmgJaA9DCJEKYwtBDtS/lIaUUpRoFUsyaBZHQKJdIjL0SRN1fZQoaAZoCWgPQwg7iQj/Iujvv5SGlFKUaBVLMmgWR0CiXP36qKgqdX2UKGgGaAloD0MI6Ih8l1KXzL+UhpRSlGgVSzJoFkdAolzbJ2dNFnV9lChoBmgJaA9DCETbMXVXdt2/lIaUUpRoFUsyaBZHQKJeejCYTkB1fZQoaAZoCWgPQwj8witJnuvDv5SGlFKUaBVLMmgWR0CiXkwjD8+BdX2UKGgGaAloD0MInaG4401+3r+UhpRSlGgVSzJoFkdAol4n0XgtOHV9lChoBmgJaA9DCDtxOV6BaOq/lIaUUpRoFUsyaBZHQKJeBVdX1ap1fZQoaAZoCWgPQwi044bfTbfjv5SGlFKUaBVLMmgWR0CiX3tKqXF+dX2UKGgGaAloD0MIxlIkXwmk07+UhpRSlGgVSzJoFkdAol9NPrOZ9nV9lChoBmgJaA9DCBGN7iB2ps6/lIaUUpRoFUsyaBZHQKJfKOYplSV1fZQoaAZoCWgPQwgUCaaaWUvVv5SGlFKUaBVLMmgWR0CiXwX/YJ3QdX2UKGgGaAloD0MIn67uWGwT47+UhpRSlGgVSzJoFkdAomB4uGsV+XV9lChoBmgJaA9DCBL3WPrQBdu/lIaUUpRoFUsyaBZHQKJgSxdIGyJ1fZQoaAZoCWgPQwjoFORnI9fgv5SGlFKUaBVLMmgWR0CiYCc6V+qjdX2UKGgGaAloD0MIforjwKtl5b+UhpRSlGgVSzJoFkdAomAEUfxMFnV9lChoBmgJaA9DCC6qRUQxecu/lIaUUpRoFUsyaBZHQKJhdQv6CUZ1fZQoaAZoCWgPQwi0zCIUW0Hev5SGlFKUaBVLMmgWR0CiYUb1h9b5dX2UKGgGaAloD0MIec4WEFoP2b+UhpRSlGgVSzJoFkdAomEinP3SKHV9lChoBmgJaA9DCBe2Zisv+c2/lIaUUpRoFUsyaBZHQKJg/7Y02tN1fZQoaAZoCWgPQwiFlQoqqn7jv5SGlFKUaBVLMmgWR0CiYnOFpPAPdX2UKGgGaAloD0MIxXHg1XJn0b+UhpRSlGgVSzJoFkdAomJFgDzRQnV9lChoBmgJaA9DCH41Bwjm6OO/lIaUUpRoFUsyaBZHQKJiISs8xKx1fZQoaAZoCWgPQwjLSL2nclrjv5SGlFKUaBVLMmgWR0CiYf4oiLVGdX2UKGgGaAloD0MIFsPVARB31b+UhpRSlGgVSzJoFkdAomNy22G7BnV9lChoBmgJaA9DCCr9hLNby9u/lIaUUpRoFUsyaBZHQKJjROAy2x91fZQoaAZoCWgPQwhvSKMCJ9vEv5SGlFKUaBVLMmgWR0CiYyCUX531dX2UKGgGaAloD0MInG9E96xr2L+UhpRSlGgVSzJoFkdAomL+UY8+zXV9lChoBmgJaA9DCHyYvWw7bcO/lIaUUpRoFUsyaBZHQKJkchEBsAN1fZQoaAZoCWgPQwi+vtalRmjgv5SGlFKUaBVLMmgWR0CiZEQb2lEadX2UKGgGaAloD0MI/id/944a37+UhpRSlGgVSzJoFkdAomQfu5SWJXV9lChoBmgJaA9DCAbYR6eufNS/lIaUUpRoFUsyaBZHQKJj/Nfw7T51ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b92c762ed600d35e88d50e5a19710151cfd7f3c577ff0c6e7518878de6eed2a9
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d4fed0827cdef8e1aca4bff3c3c3d831ca7ae7d97b06230d26d93579af575d1
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-50-generic-x86_64-with-glibc2.35 # 50-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 10 18:24:29 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.3
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f30e8947b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f30e8942040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690359676346767709, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2p1c3Rpbi8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9qdXN0aW4vLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/LGnRPmLavTuZuQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgkTrvt6+kT8KYIE/RKWSvv0Hzz9hoUM+HWFkv3Me3z7BGtG/oa0Tven7tz858tO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbcsadE+Ytq9O5m5DT/SMJe4DJ54uwtEkbeUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]\n [0.40900552 0.00579386 0.55361325]]", "desired_goal": "[[-0.45950705 1.1386373 1.0107434 ]\n [-0.28641713 1.6174313 0.1910453 ]\n [-0.89210683 0.43577918 -1.633629 ]\n [-0.03605426 1.4373752 -1.6558295 ]]", "observation": "[[ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]\n [ 4.0900552e-01 5.7938555e-03 5.5361325e-01 -7.2093346e-05\n -3.7936000e-03 -1.7317032e-05]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAYwudvSyUqT2qCHA+5SndPYBv0z0RVpA+EZgFPkj/8L3Cds49aHmMPbgz0D3QhUo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07668187 0.08280215 0.23440805]\n [ 0.10799006 0.10324001 0.28190663]\n [ 0.1304629 -0.11767441 0.10081245]\n [ 0.06859094 0.10166115 0.19777608]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4nZoWIy6yr+UhpRSlIwBbJRLMowBdJRHQKJLWgUUO/d1fZQoaAZoCWgPQwg/U69bBMbMv5SGlFKUaBVLMmgWR0CiSywMhHLBdX2UKGgGaAloD0MIGcv0S8Rbz7+UhpRSlGgVSzJoFkdAoksHwgDA8HV9lChoBmgJaA9DCGX+0TdpGtW/lIaUUpRoFUsyaBZHQKJK5OBUaQ51fZQoaAZoCWgPQwiwAKYMHNDVv5SGlFKUaBVLMmgWR0CiTFQ2VE/jdX2UKGgGaAloD0MIhH6mXrcI2L+UhpRSlGgVSzJoFkdAokwmDzyz5XV9lChoBmgJaA9DCFad1QJ7TMy/lIaUUpRoFUsyaBZHQKJMAbZOBUd1fZQoaAZoCWgPQwjqP2t+/CXjv5SGlFKUaBVLMmgWR0CiS97SZ0CBdX2UKGgGaAloD0MI/+xHisgw57+UhpRSlGgVSzJoFkdAok1I9s7+1nV9lChoBmgJaA9DCE6XxcTm4+S/lIaUUpRoFUsyaBZHQKJNGuZkTYd1fZQoaAZoCWgPQwgAV7JjIxDhv5SGlFKUaBVLMmgWR0CiTPaTfR/mdX2UKGgGaAloD0MI2pB/ZhAf0b+UhpRSlGgVSzJoFkdAokzTsD4gzXV9lChoBmgJaA9DCED7kSIyrNy/lIaUUpRoFUsyaBZHQKJOP19ORDF1fZQoaAZoCWgPQwj5gas8gbDev5SGlFKUaBVLMmgWR0CiThFbNbC8dX2UKGgGaAloD0MI1xLyQc9m4r+UhpRSlGgVSzJoFkdAok3tDBuXNXV9lChoBmgJaA9DCE8IHXQJh8y/lIaUUpRoFUsyaBZHQKJNyi5/b0x1fZQoaAZoCWgPQwgiUz4EVaPQv5SGlFKUaBVLMmgWR0CiT0rHlwLmdX2UKGgGaAloD0MIDmq/tRMl27+UhpRSlGgVSzJoFkdAok8c0DU3GXV9lChoBmgJaA9DCGufjscM1OW/lIaUUpRoFUsyaBZHQKJO+Nrj5sV1fZQoaAZoCWgPQwhy3ZTyWonqv5SGlFKUaBVLMmgWR0CiTtX4TK1YdX2UKGgGaAloD0MIsTbGTngJ2L+UhpRSlGgVSzJoFkdAolCLO/tY0XV9lChoBmgJaA9DCNDU6xaBseq/lIaUUpRoFUsyaBZHQKJQXW+XZ5B1fZQoaAZoCWgPQwjWG7XC9L3Ov5SGlFKUaBVLMmgWR0CiUDk+HJtBdX2UKGgGaAloD0MIZmt9kdCW7L+UhpRSlGgVSzJoFkdAolAWgBcRlHV9lChoBmgJaA9DCCrgnudPG+a/lIaUUpRoFUsyaBZHQKJRvDrqt5l1fZQoaAZoCWgPQwgEyNCxg8rtv5SGlFKUaBVLMmgWR0CiUY5TAFgVdX2UKGgGaAloD0MI6xotB3oo4r+UhpRSlGgVSzJoFkdAolFqJGe+VXV9lChoBmgJaA9DCEJcOXtnNOq/lIaUUpRoFUsyaBZHQKJRSBClabF1fZQoaAZoCWgPQwha8KKvIM3xv5SGlFKUaBVLMmgWR0CiUuIQ4CIUdX2UKGgGaAloD0MIMsozL4fd3L+UhpRSlGgVSzJoFkdAolK0Ao5PuXV9lChoBmgJaA9DCFWgFoOH6e+/lIaUUpRoFUsyaBZHQKJSj7+DOC51fZQoaAZoCWgPQwgs9SwI5X3hv5SGlFKUaBVLMmgWR0CiUmzqbBoFdX2UKGgGaAloD0MIkNeDSfHx2r+UhpRSlGgVSzJoFkdAolPgOH31z3V9lChoBmgJaA9DCLEZ4IJsWeK/lIaUUpRoFUsyaBZHQKJTsjdHlOp1fZQoaAZoCWgPQwjYnlkSoKbTv5SGlFKUaBVLMmgWR0CiU43sPatcdX2UKGgGaAloD0MI0v4HWKt267+UhpRSlGgVSzJoFkdAolNq/bj943V9lChoBmgJaA9DCEM50a5CSuS/lIaUUpRoFUsyaBZHQKJU2PBBRht1fZQoaAZoCWgPQwiK5gEs8uvgv5SGlFKUaBVLMmgWR0CiVKrvb48EdX2UKGgGaAloD0MIW7OVl/xP2r+UhpRSlGgVSzJoFkdAolSGqHXVb3V9lChoBmgJaA9DCLJ/ngYMkui/lIaUUpRoFUsyaBZHQKJUY8L8aXN1fZQoaAZoCWgPQwi37XvUX6/Sv5SGlFKUaBVLMmgWR0CiVcvPLPlddX2UKGgGaAloD0MIa7sJvml657+UhpRSlGgVSzJoFkdAolWdwzch1XV9lChoBmgJaA9DCI//AkGADNy/lIaUUpRoFUsyaBZHQKJVeWbgCOp1fZQoaAZoCWgPQwiPw2D+Cpnnv5SGlFKUaBVLMmgWR0CiVVZ2ZApsdX2UKGgGaAloD0MIfsNEgxQ837+UhpRSlGgVSzJoFkdAola+skpqh3V9lChoBmgJaA9DCBn/PuPCgey/lIaUUpRoFUsyaBZHQKJWkLZzxPR1fZQoaAZoCWgPQwiuY1xxcVTmv5SGlFKUaBVLMmgWR0CiVmx5cC5mdX2UKGgGaAloD0MITl5kAn6N3b+UhpRSlGgVSzJoFkdAolZJlJ6IFnV9lChoBmgJaA9DCApoImx4eue/lIaUUpRoFUsyaBZHQKJXtCfpUxV1fZQoaAZoCWgPQwhl/WZiuhDev5SGlFKUaBVLMmgWR0CiV4Yrz5GjdX2UKGgGaAloD0MI2dE41O9C9L+UhpRSlGgVSzJoFkdAoldh60IC2nV9lChoBmgJaA9DCJDbL5+smOC/lIaUUpRoFUsyaBZHQKJXPxjJ+2F1fZQoaAZoCWgPQwh8R40JMZfWv5SGlFKUaBVLMmgWR0CiWKlZX+2mdX2UKGgGaAloD0MI3zR9dsD15b+UhpRSlGgVSzJoFkdAolh7YXfqHHV9lChoBmgJaA9DCGDKwAEt3eq/lIaUUpRoFUsyaBZHQKJYVxDst051fZQoaAZoCWgPQwjIDFTGv8/dv5SGlFKUaBVLMmgWR0CiWDQnx8UmdX2UKGgGaAloD0MIRpkNMsnI57+UhpRSlGgVSzJoFkdAolmdjNIK+nV9lChoBmgJaA9DCCzvqgfMQ9y/lIaUUpRoFUsyaBZHQKJZb3wCr951fZQoaAZoCWgPQwijc36K48Dbv5SGlFKUaBVLMmgWR0CiWUsiSq2jdX2UKGgGaAloD0MIsFjDRe7pxL+UhpRSlGgVSzJoFkdAolkoHC4z8HV9lChoBmgJaA9DCNHq5AzFHdu/lIaUUpRoFUsyaBZHQKJa4JEYwZh1fZQoaAZoCWgPQwgkYkok0cvjv5SGlFKUaBVLMmgWR0CiWrLpiZv2dX2UKGgGaAloD0MI7j7HR4sz57+UhpRSlGgVSzJoFkdAolqO/gzguXV9lChoBmgJaA9DCFIst7Qakue/lIaUUpRoFUsyaBZHQKJabHXEqDt1fZQoaAZoCWgPQwgTtTS3Qljkv5SGlFKUaBVLMmgWR0CiXCxJul41dX2UKGgGaAloD0MIgVziyAOR6L+UhpRSlGgVSzJoFkdAolv+cFyJbnV9lChoBmgJaA9DCOqvV1hwP9i/lIaUUpRoFUsyaBZHQKJb2jVQQ+V1fZQoaAZoCWgPQwimme51Ul/Uv5SGlFKUaBVLMmgWR0CiW7d+gDigdX2UKGgGaAloD0MI6njMQGV86L+UhpRSlGgVSzJoFkdAol1QOz6acHV9lChoBmgJaA9DCJEKYwtBDtS/lIaUUpRoFUsyaBZHQKJdIjL0SRN1fZQoaAZoCWgPQwg7iQj/Iujvv5SGlFKUaBVLMmgWR0CiXP36qKgqdX2UKGgGaAloD0MI6Ih8l1KXzL+UhpRSlGgVSzJoFkdAolzbJ2dNFnV9lChoBmgJaA9DCETbMXVXdt2/lIaUUpRoFUsyaBZHQKJeejCYTkB1fZQoaAZoCWgPQwj8witJnuvDv5SGlFKUaBVLMmgWR0CiXkwjD8+BdX2UKGgGaAloD0MInaG4401+3r+UhpRSlGgVSzJoFkdAol4n0XgtOHV9lChoBmgJaA9DCDtxOV6BaOq/lIaUUpRoFUsyaBZHQKJeBVdX1ap1fZQoaAZoCWgPQwi044bfTbfjv5SGlFKUaBVLMmgWR0CiX3tKqXF+dX2UKGgGaAloD0MIxlIkXwmk07+UhpRSlGgVSzJoFkdAol9NPrOZ9nV9lChoBmgJaA9DCBGN7iB2ps6/lIaUUpRoFUsyaBZHQKJfKOYplSV1fZQoaAZoCWgPQwgUCaaaWUvVv5SGlFKUaBVLMmgWR0CiXwX/YJ3QdX2UKGgGaAloD0MIn67uWGwT47+UhpRSlGgVSzJoFkdAomB4uGsV+XV9lChoBmgJaA9DCBL3WPrQBdu/lIaUUpRoFUsyaBZHQKJgSxdIGyJ1fZQoaAZoCWgPQwjoFORnI9fgv5SGlFKUaBVLMmgWR0CiYCc6V+qjdX2UKGgGaAloD0MIforjwKtl5b+UhpRSlGgVSzJoFkdAomAEUfxMFnV9lChoBmgJaA9DCC6qRUQxecu/lIaUUpRoFUsyaBZHQKJhdQv6CUZ1fZQoaAZoCWgPQwi0zCIUW0Hev5SGlFKUaBVLMmgWR0CiYUb1h9b5dX2UKGgGaAloD0MIec4WEFoP2b+UhpRSlGgVSzJoFkdAomEinP3SKHV9lChoBmgJaA9DCBe2Zisv+c2/lIaUUpRoFUsyaBZHQKJg/7Y02tN1fZQoaAZoCWgPQwiFlQoqqn7jv5SGlFKUaBVLMmgWR0CiYnOFpPAPdX2UKGgGaAloD0MIxXHg1XJn0b+UhpRSlGgVSzJoFkdAomJFgDzRQnV9lChoBmgJaA9DCH41Bwjm6OO/lIaUUpRoFUsyaBZHQKJiISs8xKx1fZQoaAZoCWgPQwjLSL2nclrjv5SGlFKUaBVLMmgWR0CiYf4oiLVGdX2UKGgGaAloD0MIFsPVARB31b+UhpRSlGgVSzJoFkdAomNy22G7BnV9lChoBmgJaA9DCCr9hLNby9u/lIaUUpRoFUsyaBZHQKJjROAy2x91fZQoaAZoCWgPQwhvSKMCJ9vEv5SGlFKUaBVLMmgWR0CiYyCUX531dX2UKGgGaAloD0MInG9E96xr2L+UhpRSlGgVSzJoFkdAomL+UY8+zXV9lChoBmgJaA9DCHyYvWw7bcO/lIaUUpRoFUsyaBZHQKJkchEBsAN1fZQoaAZoCWgPQwi+vtalRmjgv5SGlFKUaBVLMmgWR0CiZEQb2lEadX2UKGgGaAloD0MI/id/944a37+UhpRSlGgVSzJoFkdAomQfu5SWJXV9lChoBmgJaA9DCAbYR6eufNS/lIaUUpRoFUsyaBZHQKJj/Nfw7T51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.19.0-50-generic-x86_64-with-glibc2.35 # 50-Ubuntu SMP PREEMPT_DYNAMIC Mon Jul 10 18:24:29 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.5039856325311121, "std_reward": 0.2515972712792348, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-26T04:02:37.146048"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edfac424a685c5d8b9968a46e475917423599bb3b78f631224eec25eae2a7905
|
3 |
+
size 2387
|