justtherightsize commited on
Commit
332320a
·
1 Parent(s): 689016b

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ license: mit
5
+ language:
6
+ - cs
7
+ ---
8
+ # Model Card for small-e-czech-2stage-online-risks-cs
9
+
10
+ <!-- Provide a quick summary of what the model is/does. -->
11
+
12
+ This model is fine-tuned for 2nd stage multi-label text classification of Online Risks in Instant Messenger dialogs of Adolescents - it expects inputs where at least one of the classes appears.
13
+
14
+ ## Model Description
15
+
16
+ The model was fine-tuned on a dataset of Instant Messenger dialogs of Adolescents. The classification is 2stage and the model outputs probablities for labels {0,1,2,3,4}:
17
+
18
+ 0. Aggression, Harassing, Hate
19
+ 1. Mental Health Problems
20
+ 2. Alcohol, Drugs
21
+ 3. Weight Loss, Diets
22
+ 4. Sexual Content
23
+
24
+ - **Developed by:** Anonymous
25
+ - **Language(s):** cs
26
+ - **Finetuned from:** small-e-czech
27
+
28
+ ## Model Sources
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** https://github.com/justtherightsize/supportive-interactions-and-risks
33
+ - **Paper:** Stay tuned!
34
+
35
+ ## Usage
36
+ Here is how to use this model to classify a context-window of a dialogue:
37
+
38
+ ```python
39
+ import numpy as np
40
+ import torch
41
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
42
+
43
+ # Prepare input texts. This model is pretrained on multi-lingual data
44
+ # and fine-tuned on English
45
+ test_texts = ['Utterance1;Utterance2;Utterance3']
46
+
47
+ # Load the model and tokenizer
48
+ model = AutoModelForSequenceClassification.from_pretrained(
49
+ 'justtherightsize/small-e-czech-2stage-online-risks-cs', num_labels=5).to("cuda")
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained(
52
+ 'justtherightsize/small-e-czech-2stage-online-risks-cs',
53
+ use_fast=False, truncation_side='left')
54
+ assert tokenizer.truncation_side == 'left'
55
+
56
+ # Define helper functions
57
+ def predict_one(text: str, tok, mod, threshold=0.5):
58
+ encoding = tok(text, return_tensors="pt", truncation=True, padding=True,
59
+ max_length=256)
60
+ encoding = {k: v.to(mod.device) for k, v in encoding.items()}
61
+ outputs = mod(**encoding)
62
+ logits = outputs.logits
63
+ sigmoid = torch.nn.Sigmoid()
64
+ probs = sigmoid(logits.squeeze().cpu())
65
+ predictions = np.zeros(probs.shape)
66
+ predictions[np.where(probs >= threshold)] = 1
67
+ return predictions, probs
68
+
69
+ def print_predictions(texts):
70
+ preds = [predict_one(tt, tokenizer, model) for tt in texts]
71
+ for c, p in preds:
72
+ print(f'{c}: {p.tolist():.4f}')
73
+
74
+ # Run the prediction
75
+ print_predictions(test_texts)
76
+ ```