justtherightsize commited on
Commit
edb5051
·
1 Parent(s): 38dc201

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ license: mit
5
+ language:
6
+ - cs
7
+ ---
8
+ # Model Card for small-e-czech-multi-label-online-risks-cs
9
+
10
+ <!-- Provide a quick summary of what the model is/does. -->
11
+
12
+ This model is fine-tuned for multi-label text classification of Online Risks in Instant Messenger dialogs of Adolescents.
13
+
14
+ ## Model Description
15
+
16
+ The model was fine-tuned on a dataset of Instant Messenger dialogs of Adolescents. The classification is multi-label and the model outputs probablities for labels {0,1,2,3,4,5}:
17
+
18
+ 0. None
19
+ 1. Aggression, Harassing, Hate
20
+ 2. Mental Health Problems
21
+ 3. Alcohol, Drugs
22
+ 4. Weight Loss, Diets
23
+ 5. Sexual Content
24
+
25
+ - **Developed by:** Anonymous
26
+ - **Language(s):** cs
27
+ - **Finetuned from:** small-e-czech
28
+
29
+ ## Model Sources
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Repository:** https://github.com/justtherightsize/supportive-interactions-and-risks
34
+ - **Paper:** Stay tuned!
35
+
36
+ ## Usage
37
+ Here is how to use this model to classify a context-window of a dialogue:
38
+
39
+ ```python
40
+ import numpy as np
41
+ import torch
42
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
43
+
44
+ # Prepare input texts. This model is pretrained on multi-lingual data
45
+ # and fine-tuned on English
46
+ test_texts = ['Utterance1;Utterance2;Utterance3']
47
+
48
+ # Load the model and tokenizer
49
+ model = AutoModelForSequenceClassification.from_pretrained(
50
+ 'justtherightsize/small-e-czech-multi-label-online-risks-cs', num_labels=6).to("cuda")
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(
53
+ 'justtherightsize/small-e-czech-multi-label-online-risks-cs',
54
+ use_fast=False, truncation_side='left')
55
+ assert tokenizer.truncation_side == 'left'
56
+
57
+ # Define helper functions
58
+ def predict_one(text: str, tok, mod, threshold=0.5):
59
+ encoding = tok(text, return_tensors="pt", truncation=True, padding=True,
60
+ max_length=256)
61
+ encoding = {k: v.to(mod.device) for k, v in encoding.items()}
62
+ outputs = mod(**encoding)
63
+ logits = outputs.logits
64
+ sigmoid = torch.nn.Sigmoid()
65
+ probs = sigmoid(logits.squeeze().cpu())
66
+ predictions = np.zeros(probs.shape)
67
+ predictions[np.where(probs >= threshold)] = 1
68
+ return predictions, probs
69
+
70
+ def print_predictions(texts):
71
+ preds = [predict_one(tt, tokenizer, model) for tt in texts]
72
+ for c, p in preds:
73
+ print(f'{c}: {p.tolist():.4f}')
74
+
75
+ # Run the prediction
76
+ print_predictions(test_texts)
77
+ ```