k4tel commited on
Commit
89a87bd
·
1 Parent(s): 108a8b4

edit readme

Browse files
Files changed (1) hide show
  1. README.md +9 -13
README.md CHANGED
@@ -24,15 +24,15 @@ The base model has been finetuned on a Twitter dataset containing text content a
24
  - **Developed by:** Kateryna Lutsai
25
  - **Model type:** regression
26
  - **Language(s) (NLP):** multilingual
27
- - **Finetuned from model [optional]:** bert-base-multilingual-cased
28
 
29
- ### Model Sources [optional]
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
  - **Repository:** https://github.com/K4TEL/geo-twitter
34
- - **Paper [optional]:** https://arxiv.org/submit/4788824/view
35
- - **Demo [optional]:** https://github.com/K4TEL/geo-twitter/blob/predict/prediction.ipynb
36
 
37
  ## Uses
38
 
@@ -99,7 +99,7 @@ Information about the model training on the user-defined data could be found in
99
  ## Evaluation
100
 
101
  <!-- This section describes the evaluation protocols and provides the results. -->
102
- All performance metrics and results are demonstrated in the Results section of the article pre-print: https://arxiv.org/submit/4788824/view
103
 
104
  ### Testing Data, Factors & Metrics
105
 
@@ -119,16 +119,12 @@ Probabilistic metrics: mean and median Cumulative Accuracy Error (CAE), mean and
119
  ### Results
120
 
121
  **Tweet geolocation prediction task**
122
-
123
- TEXT-ONLY: mean 1588 km and median 50 km, 61% of Acc@161
124
-
125
- NON-GEO: mean 800 km and median 25 km, 80% of Acc@161
126
 
127
  **User home geolocation prediction task**
128
-
129
- TEXT-ONLY: mean 892 km and median 31 km, 74% of Acc@161
130
-
131
- NON-GEO: mean 567 km and median 26 km, 82% of Acc@161
132
 
133
  ### Model Architecture and Objective
134
 
 
24
  - **Developed by:** Kateryna Lutsai
25
  - **Model type:** regression
26
  - **Language(s) (NLP):** multilingual
27
+ - **Finetuned from model:** bert-base-multilingual-cased
28
 
29
+ ### Model Sources
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
  - **Repository:** https://github.com/K4TEL/geo-twitter
34
+ - **Paper:** https://arxiv.org/pdf/2303.07865.pdf
35
+ - **Demo:** https://github.com/K4TEL/geo-twitter/blob/predict/prediction.ipynb
36
 
37
  ## Uses
38
 
 
99
  ## Evaluation
100
 
101
  <!-- This section describes the evaluation protocols and provides the results. -->
102
+ All performance metrics and results are demonstrated in the Results section of the article pre-print: https://arxiv.org/pdf/2303.07865.pdf
103
 
104
  ### Testing Data, Factors & Metrics
105
 
 
119
  ### Results
120
 
121
  **Tweet geolocation prediction task**
122
+ - TEXT-ONLY: mean 1588 km and median 50 km, 61% of Acc@161
123
+ - NON-GEO: mean 800 km and median 25 km, 80% of Acc@161
 
 
124
 
125
  **User home geolocation prediction task**
126
+ - TEXT-ONLY: mean 892 km and median 31 km, 74% of Acc@161
127
+ - NON-GEO: mean 567 km and median 26 km, 82% of Acc@161
 
 
128
 
129
  ### Model Architecture and Objective
130