edit readme
Browse files
README.md
CHANGED
@@ -24,15 +24,15 @@ The base model has been finetuned on a Twitter dataset containing text content a
|
|
24 |
- **Developed by:** Kateryna Lutsai
|
25 |
- **Model type:** regression
|
26 |
- **Language(s) (NLP):** multilingual
|
27 |
-
- **Finetuned from model
|
28 |
|
29 |
-
### Model Sources
|
30 |
|
31 |
<!-- Provide the basic links for the model. -->
|
32 |
|
33 |
- **Repository:** https://github.com/K4TEL/geo-twitter
|
34 |
-
- **Paper
|
35 |
-
- **Demo
|
36 |
|
37 |
## Uses
|
38 |
|
@@ -99,7 +99,7 @@ Information about the model training on the user-defined data could be found in
|
|
99 |
## Evaluation
|
100 |
|
101 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
102 |
-
All performance metrics and results are demonstrated in the Results section of the article pre-print: https://arxiv.org/
|
103 |
|
104 |
### Testing Data, Factors & Metrics
|
105 |
|
@@ -119,16 +119,12 @@ Probabilistic metrics: mean and median Cumulative Accuracy Error (CAE), mean and
|
|
119 |
### Results
|
120 |
|
121 |
**Tweet geolocation prediction task**
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
NON-GEO: mean 800 km and median 25 km, 80% of Acc@161
|
126 |
|
127 |
**User home geolocation prediction task**
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
NON-GEO: mean 567 km and median 26 km, 82% of Acc@161
|
132 |
|
133 |
### Model Architecture and Objective
|
134 |
|
|
|
24 |
- **Developed by:** Kateryna Lutsai
|
25 |
- **Model type:** regression
|
26 |
- **Language(s) (NLP):** multilingual
|
27 |
+
- **Finetuned from model:** bert-base-multilingual-cased
|
28 |
|
29 |
+
### Model Sources
|
30 |
|
31 |
<!-- Provide the basic links for the model. -->
|
32 |
|
33 |
- **Repository:** https://github.com/K4TEL/geo-twitter
|
34 |
+
- **Paper:** https://arxiv.org/pdf/2303.07865.pdf
|
35 |
+
- **Demo:** https://github.com/K4TEL/geo-twitter/blob/predict/prediction.ipynb
|
36 |
|
37 |
## Uses
|
38 |
|
|
|
99 |
## Evaluation
|
100 |
|
101 |
<!-- This section describes the evaluation protocols and provides the results. -->
|
102 |
+
All performance metrics and results are demonstrated in the Results section of the article pre-print: https://arxiv.org/pdf/2303.07865.pdf
|
103 |
|
104 |
### Testing Data, Factors & Metrics
|
105 |
|
|
|
119 |
### Results
|
120 |
|
121 |
**Tweet geolocation prediction task**
|
122 |
+
- TEXT-ONLY: mean 1588 km and median 50 km, 61% of Acc@161
|
123 |
+
- NON-GEO: mean 800 km and median 25 km, 80% of Acc@161
|
|
|
|
|
124 |
|
125 |
**User home geolocation prediction task**
|
126 |
+
- TEXT-ONLY: mean 892 km and median 31 km, 74% of Acc@161
|
127 |
+
- NON-GEO: mean 567 km and median 26 km, 82% of Acc@161
|
|
|
|
|
128 |
|
129 |
### Model Architecture and Objective
|
130 |
|