Text Generation
Transformers
Safetensors
Indonesian
English
qwen2
conversational
convAI
text-generation-inference
Inference Endpoints
File size: 5,527 Bytes
65d1084
 
63a8100
cc78612
 
 
 
 
 
 
 
 
 
 
 
803641b
cc78612
66a1f84
cc78612
 
66a1f84
 
cc78612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fe5d9e
cc78612
 
 
 
 
 
63a8100
 
 
 
 
 
 
 
 
 
 
 
65d1084
 
 
63a8100
65d1084
 
 
 
 
63a8100
 
9b92b6c
65d1084
 
9b92b6c
63a8100
 
 
 
 
65d1084
63a8100
65d1084
 
 
46a2525
63a8100
65d1084
 
63a8100
65d1084
63a8100
 
 
 
 
 
 
0e2148e
63a8100
 
 
0e2148e
63a8100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be55106
 
63a8100
 
 
 
be55106
63a8100
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
library_name: transformers
widget:
- messages:
  - role: system
    content: >-
      Anda adalah seorang konselor karir. User akan memberi Anda seorang
      individu mencari bimbingan dalam kehidupan profesional mereka, dan tugas
      Anda adalah membantu mereka dalam menentukan karir apa yang paling cocok
      bagi mereka berdasarkan keterampilan mereka, minat, dan pengalaman. Anda
      juga harus melakukan penelitian terhadap berbagai hal tersebut pilihan
      yang tersedia, jelaskan tren pasar kerja di berbagai industri, Dan saran
      tentang kualifikasi mana yang akan bermanfaat untuk mengejar bidang
      tertentu.
  - role: user
    content: Halo Say!
  - role: assistant
    content: Eh hai, Say ! Apa yang bisa aku bantu?
  - role: user
    content: >-
      Saya tertarik untuk mengembangkan karir di bidang perbankan. Apa yang dapat kamu
      rekomendasikan ke saya?
- messages:
  - role: system
    content: >-
      Anda adalah asisten yang berpengetahuan luas. Bantu user sebanyak yang
      Anda bisa.
  - role: user
    content: Bagaimana caranya menjadi lebih aktif di Bulan Puasa?
- messages:
  - role: system
    content: Anda adalah asisten yang membantu dan memberikan tanggapan yang cerdas.
  - role: user
    content: Haloooo Bund!
  - role: assistant
    content: Halo! Apa yang bisa saya bantu?
  - role: user
    content: >-
      Saya perlu menu buka puasa yang segar di Bulan Ramadhan ini,  makanan khas Indonesia apa saja yang
      cocok untuk menu buka puasa di Bulan Ramadhan?
- messages:
  - role: system
    content: >-
      Anda adalah asisten yang sangat kreatif. Pengguna akan memberi Anda tugas,
      yang harus Anda selesaikan dengan seluruh pengetahuan Anda.
  - role: user
    content: >-
      Tulis latar belakang cerita novel tentang seorang wanita yang ingin memberantas
      geng 9 Naga.
inference:
  parameters:
    max_new_tokens: 128
    penalty_alpha: 0.5
    top_k: 4
pipeline_tag: text-generation
tags:
- conversational
- convAI
license: apache-2.0
language:
- id
- en
datasets:
- argilla/OpenHermes2.5-dpo-binarized-alpha
- wikimedia/wikipedia
- FreedomIntelligence/evol-instruct-indonesian
---


![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/642b04e4ecec03b44649e318/6CCm81lqJ-i7aB38MtrAY.jpeg)



### Model Description

Nusantara is a series of Open Weight Language Model of Bahasa Indonesia (Indonesia language). Nusantara is based from Qwen1.5 Language Model, finetuned by domain specific of datasets. 
As Chat-implemented language model, Nusantara is capable to do Question-Answering and respond to instructions given in Bahasa Indonesia. 
Due to limited resources, only 0.8B, 1.8B, 2.7B, 4B and 7B models are available. If you're interested in funding this project for further development, specific usage, or larger parameters, please contact us.


- **Finetuned by:** [Kalis AI](https://huggingface.co/kalisai)
- **Funded by:** Self-funded
- **Model type:** transformer-based decoder-only language model
- **Language(s):** Bahasa Indonesia (id), English (en)
- **License:** Nusantara is licensed under Apache-2.0, but any usage of this model should comply with [Qwen License](https://huggingface.co/Qwen/Qwen1.5-4B/blob/main/LICENSE)
- **Finetuned from model:** [Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B/tree/main)

### Attentions!

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Due to certain circumstances, models with <4B parameters tend to hallucinate easily. Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
Because this model is also trained with uncensored datasets, there is the possibility of negative impacts arising from using this model. All kinds of impacts that arise as a result of using this model are entirely the responsibility of the user. The model maker is not responsible for any risks incurred.


## How to Get Started with the Model

Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
    "kalisai/Nusantara-1.8B-Indo-Chat",
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("kalisai/Nusantara-1.8B-Indo-Chat")

prompt = "Berikan saya resep memasak nasi goreng yang lezat."
messages = [
    {"role": "system", "content": "Kamu adalah Nusantara, asisten AI yang pintar."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```


## Citation

If you use the Nusantara language model in your research or project, please cite it as:
```
@misc{zulfikar_aji_kusworo_2024,
  title={Nusantara: A Series of Versatile Open Weight Language Model of Bahasa Indonesia},
  author={Zulfikar Aji Kusworo},
  publisher={Hugging Face}
  journal={Hugging Face Repository},
  year={2024}
  url = {https://huggingface.co/kalisai}
}
```