Update of Jupyter Notebook
Browse files
Poetry_Fusion_using_Llama_3.2.ipynb
CHANGED
@@ -55,9 +55,7 @@
|
|
55 |
"\n",
|
56 |
"We will use a selected dataset that includes various poet styles. This dataset will be preprocessed \n",
|
57 |
"to highlight stylistic characteristics for model fine-tuning, focusing on continuous and meaningful \n",
|
58 |
-
"poetic text for optimal style fusion
|
59 |
-
"\n",
|
60 |
-
"*Note: Ensure the dataset is accessible and formatted to match model input requirements.*\n"
|
61 |
]
|
62 |
},
|
63 |
{
|
@@ -174,7 +172,7 @@
|
|
174 |
"id": "xNqIYtQcUBSm"
|
175 |
},
|
176 |
"source": [
|
177 |
-
"
|
178 |
]
|
179 |
},
|
180 |
{
|
@@ -328,7 +326,7 @@
|
|
328 |
"id": "aTBJVE4PaJwK"
|
329 |
},
|
330 |
"source": [
|
331 |
-
"Here we will use the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets using PEFT adapters.
|
332 |
]
|
333 |
},
|
334 |
{
|
@@ -483,7 +481,7 @@
|
|
483 |
"id": "JjvisllacNZM"
|
484 |
},
|
485 |
"source": [
|
486 |
-
"Now let's train the model! Simply call `trainer.train()
|
487 |
]
|
488 |
},
|
489 |
{
|
|
|
55 |
"\n",
|
56 |
"We will use a selected dataset that includes various poet styles. This dataset will be preprocessed \n",
|
57 |
"to highlight stylistic characteristics for model fine-tuning, focusing on continuous and meaningful \n",
|
58 |
+
"poetic text for optimal style fusion."
|
|
|
|
|
59 |
]
|
60 |
},
|
61 |
{
|
|
|
172 |
"id": "xNqIYtQcUBSm"
|
173 |
},
|
174 |
"source": [
|
175 |
+
"The tokenizer is loaded below."
|
176 |
]
|
177 |
},
|
178 |
{
|
|
|
326 |
"id": "aTBJVE4PaJwK"
|
327 |
},
|
328 |
"source": [
|
329 |
+
"Here we will use the [`SFTTrainer` from TRL library](https://huggingface.co/docs/trl/main/en/sft_trainer) that gives a wrapper around transformers `Trainer` to easily fine-tune models on instruction based datasets using PEFT adapters. The training arguments are loaded below. We choose sepcific arguments for our usecase."
|
330 |
]
|
331 |
},
|
332 |
{
|
|
|
481 |
"id": "JjvisllacNZM"
|
482 |
},
|
483 |
"source": [
|
484 |
+
"Now let's train the model! Simply call `trainer.train()`. It will require wandb.ai API key."
|
485 |
]
|
486 |
},
|
487 |
{
|