File size: 2,352 Bytes
b4b6bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
base_model: facebook/detr-resnet-101
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: detr-resnet-101_rmsprop_finetuned_food-roboflow
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# detr-resnet-101_rmsprop_finetuned_food-roboflow
This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9853
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 5.8836 | 0.77 | 50 | 4.5609 |
| 3.9193 | 1.54 | 100 | 3.5764 |
| 3.2186 | 2.31 | 150 | 3.2685 |
| 2.8952 | 3.08 | 200 | 3.1941 |
| 2.8565 | 3.85 | 250 | 3.1280 |
| 2.7563 | 4.62 | 300 | 3.0448 |
| 2.668 | 5.38 | 350 | 3.0325 |
| 2.6474 | 6.15 | 400 | 2.9764 |
| 2.6463 | 6.92 | 450 | 2.9752 |
| 2.6616 | 7.69 | 500 | 3.0352 |
| 2.5155 | 8.46 | 550 | 2.9928 |
| 2.5778 | 9.23 | 600 | 2.9603 |
| 2.5876 | 10.0 | 650 | 2.9502 |
| 2.513 | 10.77 | 700 | 3.0151 |
| 2.5598 | 11.54 | 750 | 3.0011 |
| 2.491 | 12.31 | 800 | 3.0134 |
| 2.5103 | 13.08 | 850 | 2.9825 |
| 2.5497 | 13.85 | 900 | 3.0169 |
| 2.5738 | 14.62 | 950 | 2.9853 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|