kartmannXu commited on
Commit
198bf8d
Β·
verified Β·
1 Parent(s): ef116db

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ from .onnx_config_minicpm import MiniCPMOnnxConfig
2
+
3
+ __all__ = [..., "MiniCPMOnnxConfig"]
added_tokens.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 122753,
3
+ "<|im_start|>": 122757,
4
+ "<|tool_call|>": 122756,
5
+ "▁<EOT>": 122758,
6
+ "▁<MID>": 122755,
7
+ "▁<PRE>": 122754,
8
+ "▁<SUF>": 122759
9
+ }
config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/CPM-2B",
3
+ "architectures": [
4
+ "MiniCPMForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_minicpm.MiniCPMConfig",
10
+ "AutoModel": "modeling_minicpm.MiniCPMModel",
11
+ "AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
12
+ "AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
13
+ "AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
14
+ },
15
+ "bos_token_id": 1,
16
+ "dim_model_base": 256,
17
+ "eos_token_id": 2,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 2304,
20
+ "initializer_range": 0.1,
21
+ "intermediate_size": 5760,
22
+ "max_length": null,
23
+ "max_position_embeddings": 65536,
24
+ "model_type": "minicpm",
25
+ "num_attention_heads": 36,
26
+ "num_experts": 0,
27
+ "num_experts_per_tok": 0,
28
+ "num_hidden_layers": 40,
29
+ "num_key_value_heads": 36,
30
+ "pretraining_tp": 1,
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": {
33
+ "factor": 4.0,
34
+ "type": "dynamic"
35
+ },
36
+ "rope_theta": 1000000.0,
37
+ "scale_depth": 1.4,
38
+ "scale_emb": 12,
39
+ "tie_word_embeddings": false,
40
+ "torch_dtype": "bfloat16",
41
+ "transformers_version": "4.45.2",
42
+ "use_cache": true,
43
+ "vocab_size": 122760,
44
+
45
+ "blockwise_prune": true,
46
+ "start_block_idx": 5,
47
+ "end_block_idx": 34,
48
+ "middleblock_hidden_size": 1152,
49
+ "middleblock_intermediate_size": 2880,
50
+ "middleblock_num_attention_heads": 36,
51
+ "middleblock_num_key_value_heads": 36
52
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ MiniCPM model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
29
+
30
+
31
+ class MiniCPMConfig(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the MiniCPM-7B.
36
+
37
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
+ documentation from [`PretrainedConfig`] for more information.
39
+
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32000):
43
+ Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`MiniCPMModel`]
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 11008):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
64
+ The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
65
+ MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
66
+ initializer_range (`float`, *optional*, defaults to 0.02):
67
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
68
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
69
+ The epsilon used by the rms normalization layers.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
72
+ relevant if `config.is_decoder=True`.
73
+ pad_token_id (`int`, *optional*):
74
+ Padding token id.
75
+ bos_token_id (`int`, *optional*, defaults to 1):
76
+ Beginning of stream token id.
77
+ eos_token_id (`int`, *optional*, defaults to 2):
78
+ End of stream token id.
79
+ pretraining_tp (`int`, *optional*, defaults to 1):
80
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
81
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
82
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
83
+ issue](https://github.com/pytorch/pytorch/issues/76232).
84
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
85
+ Whether to tie weight embeddings
86
+ rope_theta (`float`, *optional*, defaults to 10000.0):
87
+ The base period of the RoPE embeddings.
88
+ rope_scaling (`Dict`, *optional*):
89
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
90
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
91
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
92
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
93
+ these scaling strategies behave:
94
+ https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
95
+ experimental feature, subject to breaking API changes in future versions.
96
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
97
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
98
+ attention_dropout (`float`, *optional*, defaults to 0.0):
99
+ The dropout ratio for the attention probabilities.
100
+
101
+ ```python
102
+ >>> from transformers import MiniCPMModel, MiniCPMConfig
103
+
104
+ >>> # Initializing a MiniCPM minicpm-7b style configuration
105
+ >>> configuration = MiniCPMConfig()
106
+
107
+ >>> # Initializing a model from the minicpm-7b style configuration
108
+ >>> model = MiniCPMModel(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "minicpm"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32000,
120
+ hidden_size=4096,
121
+ intermediate_size=11008,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ hidden_act="silu",
126
+ max_position_embeddings=2048,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-6,
129
+ use_cache=True,
130
+ pad_token_id=None,
131
+ bos_token_id=1,
132
+ eos_token_id=2,
133
+ pretraining_tp=1,
134
+ tie_word_embeddings=True,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ attention_bias=False,
138
+ attention_dropout=0.0,
139
+ scale_emb=1,
140
+ dim_model_base=1,
141
+ scale_depth=1,
142
+ num_experts=0,
143
+ num_experts_per_tok=0,
144
+ blockwise_prune: bool = False,
145
+ start_block_idx: int = 5,
146
+ end_block_idx: int = 34, # inclusive
147
+ middleblock_hidden_size=None,
148
+ middleblock_intermediate_size=None,
149
+ middleblock_num_attention_heads=36,
150
+ middleblock_num_key_value_heads=None,
151
+ **kwargs,
152
+ ):
153
+ self.vocab_size = vocab_size
154
+ self.max_position_embeddings = max_position_embeddings
155
+ self.hidden_size = hidden_size
156
+ self.intermediate_size = intermediate_size
157
+ self.num_hidden_layers = num_hidden_layers
158
+ self.num_attention_heads = num_attention_heads
159
+
160
+ # for backward compatibility
161
+ if num_key_value_heads is None:
162
+ num_key_value_heads = num_attention_heads
163
+
164
+ self.num_key_value_heads = num_key_value_heads
165
+ self.hidden_act = hidden_act
166
+ self.initializer_range = initializer_range
167
+ self.rms_norm_eps = rms_norm_eps
168
+ self.pretraining_tp = pretraining_tp
169
+ self.use_cache = use_cache
170
+ self.rope_theta = rope_theta
171
+ self.rope_scaling = rope_scaling
172
+ self._rope_scaling_validation()
173
+ self.attention_bias = attention_bias
174
+ self.attention_dropout = attention_dropout
175
+ self.scale_emb = scale_emb
176
+ self.dim_model_base = dim_model_base
177
+ self.scale_depth = scale_depth
178
+ self.num_experts = num_experts
179
+ self.num_experts_per_tok = num_experts_per_tok
180
+
181
+ self.blockwise_prune = blockwise_prune
182
+ self.start_block_idx = start_block_idx
183
+ self.end_block_idx = end_block_idx
184
+
185
+ self.middleblock_hidden_size = middleblock_hidden_size if middleblock_hidden_size is not None else hidden_size
186
+ self.middleblock_intermediate_size = middleblock_intermediate_size if middleblock_intermediate_size is not None else intermediate_size
187
+ self.middleblock_num_attention_heads = middleblock_num_attention_heads if middleblock_num_attention_heads is not None else num_attention_heads
188
+ self.middleblock_num_key_value_heads = middleblock_num_key_value_heads if middleblock_num_key_value_heads is not None else middleblock_num_attention_heads
189
+
190
+ super().__init__(
191
+ pad_token_id=pad_token_id,
192
+ bos_token_id=bos_token_id,
193
+ eos_token_id=eos_token_id,
194
+ tie_word_embeddings=tie_word_embeddings,
195
+ **kwargs,
196
+ )
197
+ try:
198
+ import flash_attn
199
+ self._attn_implementation = "flash_attention_2"
200
+ except:
201
+ pass
202
+
203
+ def _rope_scaling_validation(self):
204
+ """
205
+ Validate the `rope_scaling` configuration.
206
+ """
207
+ if self.rope_scaling is None:
208
+ return
209
+
210
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
211
+ raise ValueError(
212
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
213
+ f"got {self.rope_scaling}"
214
+ )
215
+ rope_scaling_type = self.rope_scaling.get("type", None)
216
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
217
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
218
+ raise ValueError(
219
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
220
+ )
221
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
222
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 131072,
6
+ "transformers_version": "4.45.2"
7
+ }
modeling_minicpm.py ADDED
@@ -0,0 +1,1460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch MiniCPM model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union, Dict
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from transformers.utils.import_utils import is_torch_fx_available
51
+ from .configuration_minicpm import MiniCPMConfig
52
+ import re
53
+
54
+ try:
55
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
56
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
57
+ except:
58
+ pass
59
+
60
+
61
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
62
+ # It means that the function will not be traced through and simply appear as a node in the graph.
63
+ if is_torch_fx_available():
64
+ if not is_torch_greater_or_equal_than_1_13:
65
+ import torch.fx
66
+
67
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
68
+
69
+
70
+ logger = logging.get_logger(__name__)
71
+
72
+ _CONFIG_FOR_DOC = "MiniCPMConfig"
73
+
74
+
75
+ def _get_unpad_data(attention_mask):
76
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
77
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
78
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
79
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
80
+ return (
81
+ indices,
82
+ cu_seqlens,
83
+ max_seqlen_in_batch,
84
+ )
85
+
86
+
87
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
88
+ warnings.warn(
89
+ "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
90
+ )
91
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
92
+
93
+
94
+ def _make_causal_mask(
95
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
96
+ ):
97
+ warnings.warn(
98
+ "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
99
+ )
100
+ return AttentionMaskConverter._make_causal_mask(
101
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
102
+ )
103
+
104
+ # @torch.jit.script # type: ignore
105
+ def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
106
+ old_dtype = hidden.dtype
107
+ variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
108
+ hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
109
+ return hidden * weight
110
+
111
+
112
+ class MiniCPMRMSNorm(nn.Module):
113
+ def __init__(self, hidden_size, eps=1e-6):
114
+ """
115
+ MiniCPMRMSNorm is equivalent to T5LayerNorm
116
+ """
117
+ super().__init__()
118
+ self.weight = nn.Parameter(torch.ones(hidden_size))
119
+ self.variance_epsilon = eps
120
+
121
+ def forward(self, hidden_states):
122
+ return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
123
+
124
+
125
+ ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
126
+
127
+
128
+ class MiniCPMRotaryEmbedding(nn.Module):
129
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
130
+ super().__init__()
131
+
132
+ self.dim = dim
133
+ self.max_position_embeddings = max_position_embeddings
134
+ self.base = base
135
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
136
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
137
+
138
+ # Build here to make `torch.jit.trace` work.
139
+ self._set_cos_sin_cache(
140
+ # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
141
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
142
+ )
143
+
144
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
145
+ self.max_seq_len_cached = seq_len
146
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
147
+ freqs = torch.outer(t, self.inv_freq)
148
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
149
+ emb = torch.cat((freqs, freqs), dim=-1)
150
+
151
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
152
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
153
+
154
+ def forward(self, x, seq_len=None):
155
+ # x: [bs, num_attention_heads, seq_len, head_size]
156
+ if seq_len > self.max_seq_len_cached:
157
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
158
+
159
+ return (
160
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
161
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
162
+ )
163
+
164
+
165
+ class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
166
+ """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
167
+
168
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
175
+ t = t / self.scaling_factor
176
+
177
+ freqs = torch.outer(t, self.inv_freq)
178
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
179
+ emb = torch.cat((freqs, freqs), dim=-1)
180
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
181
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
182
+
183
+
184
+ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
185
+ """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+
194
+ if seq_len > self.max_position_embeddings:
195
+ base = self.base * (
196
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
197
+ ) ** (self.dim / (self.dim - 2))
198
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
199
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
200
+
201
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
202
+
203
+ freqs = torch.outer(t, self.inv_freq)
204
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
205
+ emb = torch.cat((freqs, freqs), dim=-1)
206
+
207
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
208
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
209
+
210
+
211
+ def rotate_half(x):
212
+ """Rotates half the hidden dims of the input."""
213
+ x1 = x[..., : x.shape[-1] // 2]
214
+ x2 = x[..., x.shape[-1] // 2 :]
215
+ return torch.cat((-x2, x1), dim=-1)
216
+
217
+
218
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
219
+ """Applies Rotary Position Embedding to the query and key tensors.
220
+
221
+ Args:
222
+ q (`torch.Tensor`): The query tensor.
223
+ k (`torch.Tensor`): The key tensor.
224
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
225
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
226
+ position_ids (`torch.Tensor`):
227
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
228
+ used to pass offsetted position ids when working with a KV-cache.
229
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
230
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
231
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
232
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
233
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
234
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
235
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
236
+ Returns:
237
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
238
+ """
239
+ # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
240
+ # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
241
+ # q_embed = (q * cos) + (rotate_half(q) * sin)
242
+ # k_embed = (k * cos) + (rotate_half(k) * sin)
243
+ orig_dtype = k.dtype
244
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
245
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
246
+ q_fp32 = q.to(dtype=torch.float32, device=q.device)
247
+ k_fp32 = k.to(dtype=torch.float32, device=k.device)
248
+ q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
249
+ k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
250
+ return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
251
+
252
+
253
+ class MiniCPMMLP(nn.Module):
254
+ def __init__(self, config, layer_idx: Optional[int] = None):
255
+ super().__init__()
256
+ self.config = config
257
+ self.layer_idx = layer_idx
258
+ self.hidden_size = config.hidden_size
259
+ self.intermediate_size = config.middleblock_intermediate_size if config.start_block_idx <= layer_idx <= config.end_block_idx and config.blockwise_prune else config.intermediate_size
260
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
261
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
262
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
263
+ self.act_fn = ACT2FN[config.hidden_act]
264
+
265
+ def forward(self, x):
266
+ if self.config.pretraining_tp > 1:
267
+ slice = self.intermediate_size // self.config.pretraining_tp
268
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
269
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
270
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
271
+
272
+ gate_proj = torch.cat(
273
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
274
+ )
275
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
276
+
277
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
278
+ down_proj = [
279
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
280
+ ]
281
+ down_proj = sum(down_proj)
282
+ else:
283
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
284
+
285
+ return down_proj
286
+
287
+
288
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
289
+ """
290
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
291
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
292
+ """
293
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
294
+ if n_rep == 1:
295
+ return hidden_states
296
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
297
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
298
+
299
+
300
+
301
+ class MiniCPMAttention(nn.Module):
302
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
303
+
304
+ def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
305
+ super().__init__()
306
+ self.config = config
307
+ self.layer_idx = layer_idx
308
+ if layer_idx is None:
309
+ logger.warning_once(
310
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
311
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
312
+ "when creating this class."
313
+ )
314
+
315
+ self.attention_dropout = config.attention_dropout
316
+ self.hidden_size = config.hidden_size
317
+ self.num_heads = config.middleblock_num_attention_heads if config.start_block_idx <= layer_idx <= config.end_block_idx and config.blockwise_prune else config.num_attention_heads
318
+ self.head_dim = (config.middleblock_hidden_size if config.start_block_idx <= layer_idx <= config.end_block_idx and config.blockwise_prune else config.hidden_size) // self.num_heads
319
+ self.num_key_value_heads = config.middleblock_num_key_value_heads if config.start_block_idx <= layer_idx <= config.end_block_idx and config.blockwise_prune else config.num_key_value_heads
320
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
321
+ self.max_position_embeddings = config.max_position_embeddings
322
+ self.rope_theta = config.rope_theta
323
+ self.is_causal = True
324
+
325
+ # if (self.head_dim * self.num_heads) != (config.middleblock_hidden_size if config.start_block_idx <= layer_idx <= config.end_block_idx and config.blockwise_prune else self.hidden_size):
326
+ # raise ValueError(
327
+ # f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
328
+ # f" and `num_heads`: {self.num_heads})."
329
+ # )
330
+
331
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
332
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
333
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
334
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
335
+ self._init_rope()
336
+
337
+ def _init_rope(self):
338
+ if self.config.rope_scaling is None:
339
+ self.rotary_emb = MiniCPMRotaryEmbedding(
340
+ self.head_dim,
341
+ max_position_embeddings=self.max_position_embeddings,
342
+ base=self.rope_theta,
343
+ )
344
+ else:
345
+ scaling_type = self.config.rope_scaling["type"]
346
+ scaling_factor = self.config.rope_scaling["factor"]
347
+ if scaling_type == "linear":
348
+ self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
349
+ self.head_dim,
350
+ max_position_embeddings=self.max_position_embeddings,
351
+ scaling_factor=scaling_factor,
352
+ base=self.rope_theta,
353
+ )
354
+ elif scaling_type == "dynamic":
355
+ self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
356
+ self.head_dim,
357
+ max_position_embeddings=self.max_position_embeddings,
358
+ scaling_factor=scaling_factor,
359
+ base=self.rope_theta,
360
+ )
361
+ else:
362
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
363
+
364
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
365
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
366
+
367
+ def forward(
368
+ self,
369
+ hidden_states: torch.Tensor,
370
+ attention_mask: Optional[torch.Tensor] = None,
371
+ position_ids: Optional[torch.LongTensor] = None,
372
+ past_key_value: Optional[Cache] = None,
373
+ output_attentions: bool = False,
374
+ use_cache: bool = False,
375
+ **kwargs,
376
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
377
+ if "padding_mask" in kwargs:
378
+ warnings.warn(
379
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
380
+ )
381
+
382
+ bsz, q_len, _ = hidden_states.size()
383
+
384
+ if self.config.pretraining_tp > 1:
385
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
386
+ query_slices = self.q_proj.weight.split(
387
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
388
+ )
389
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
390
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
391
+
392
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
393
+ query_states = torch.cat(query_states, dim=-1)
394
+
395
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
396
+ key_states = torch.cat(key_states, dim=-1)
397
+
398
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
399
+ value_states = torch.cat(value_states, dim=-1)
400
+
401
+ else:
402
+ query_states = self.q_proj(hidden_states)
403
+ key_states = self.k_proj(hidden_states)
404
+ value_states = self.v_proj(hidden_states)
405
+
406
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
407
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
408
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
409
+
410
+ kv_seq_len = key_states.shape[-2]
411
+ if past_key_value is not None:
412
+ if self.layer_idx is None:
413
+ raise ValueError(
414
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
415
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
416
+ "with a layer index."
417
+ )
418
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
419
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
420
+
421
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
422
+
423
+ if past_key_value is not None:
424
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
425
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
426
+
427
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
428
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
429
+
430
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
431
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
432
+ raise ValueError(
433
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
434
+ f" {attn_weights.size()}"
435
+ )
436
+
437
+ if attention_mask is not None:
438
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
439
+ raise ValueError(
440
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
441
+ )
442
+ attn_weights = attn_weights + attention_mask
443
+
444
+ # upcast attention to fp32
445
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
446
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
447
+ attn_output = torch.matmul(attn_weights, value_states)
448
+
449
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
450
+ raise ValueError(
451
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
452
+ f" {attn_output.size()}"
453
+ )
454
+
455
+ attn_output = attn_output.transpose(1, 2).contiguous()
456
+
457
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
458
+
459
+ if self.config.pretraining_tp > 1:
460
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
461
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
462
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
463
+ else:
464
+ attn_output = self.o_proj(attn_output)
465
+
466
+ if not output_attentions:
467
+ attn_weights = None
468
+
469
+ return attn_output, attn_weights, past_key_value
470
+
471
+
472
+ class MiniCPMFlashAttention2(MiniCPMAttention):
473
+ """
474
+ MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
475
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
476
+ flash attention and deal with padding tokens in case the input contains any of them.
477
+ """
478
+
479
+ def __init__(self, *args, **kwargs):
480
+ super().__init__(*args, **kwargs)
481
+
482
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
483
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
484
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
485
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
486
+
487
+ def forward(
488
+ self,
489
+ hidden_states: torch.Tensor,
490
+ attention_mask: Optional[torch.LongTensor] = None,
491
+ position_ids: Optional[torch.LongTensor] = None,
492
+ past_key_value: Optional[Cache] = None,
493
+ output_attentions: bool = False,
494
+ use_cache: bool = False,
495
+ **kwargs,
496
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
497
+ # MiniCPMFlashAttention2 attention does not support output_attentions
498
+ if "padding_mask" in kwargs:
499
+ warnings.warn(
500
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
501
+ )
502
+
503
+ # overwrite attention_mask with padding_mask
504
+ attention_mask = kwargs.pop("padding_mask")
505
+
506
+ output_attentions = False
507
+
508
+ bsz, q_len, _ = hidden_states.size()
509
+
510
+ query_states = self.q_proj(hidden_states)
511
+ key_states = self.k_proj(hidden_states)
512
+ value_states = self.v_proj(hidden_states)
513
+
514
+ # Flash attention requires the input to have the shape
515
+ # batch_size x seq_length x head_dim x hidden_dim
516
+ # therefore we just need to keep the original shape
517
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
518
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
519
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
520
+
521
+ kv_seq_len = key_states.shape[-2]
522
+ if past_key_value is not None:
523
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
524
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
525
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
526
+
527
+ if past_key_value is not None:
528
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
529
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
530
+
531
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
532
+ # to be able to avoid many of these transpose/reshape/view.
533
+ query_states = query_states.transpose(1, 2)
534
+ key_states = key_states.transpose(1, 2)
535
+ value_states = value_states.transpose(1, 2)
536
+
537
+ dropout_rate = self.attention_dropout if self.training else 0.0
538
+
539
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
540
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
541
+ # cast them back in the correct dtype just to be sure everything works as expected.
542
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
543
+ # in fp32. (MiniCPMRMSNorm handles it correctly)
544
+
545
+ input_dtype = query_states.dtype
546
+ if input_dtype == torch.float32:
547
+ # Handle the case where the model is quantized
548
+ if hasattr(self.config, "_pre_quantization_dtype"):
549
+ target_dtype = self.config._pre_quantization_dtype
550
+ else:
551
+ target_dtype = self.q_proj.weight.dtype
552
+
553
+ logger.warning_once(
554
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
555
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
556
+ f" {target_dtype}."
557
+ )
558
+
559
+ query_states = query_states.to(target_dtype)
560
+ key_states = key_states.to(target_dtype)
561
+ value_states = value_states.to(target_dtype)
562
+
563
+ attn_output = self._flash_attention_forward(
564
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
565
+ )
566
+
567
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
568
+ attn_output = self.o_proj(attn_output)
569
+
570
+ if not output_attentions:
571
+ attn_weights = None
572
+
573
+ return attn_output, attn_weights, past_key_value
574
+
575
+ def _flash_attention_forward(
576
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
577
+ ):
578
+ """
579
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
580
+ first unpad the input, then computes the attention scores and pad the final attention scores.
581
+
582
+ Args:
583
+ query_states (`torch.Tensor`):
584
+ Input query states to be passed to Flash Attention API
585
+ key_states (`torch.Tensor`):
586
+ Input key states to be passed to Flash Attention API
587
+ value_states (`torch.Tensor`):
588
+ Input value states to be passed to Flash Attention API
589
+ attention_mask (`torch.Tensor`):
590
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
591
+ position of padding tokens and 1 for the position of non-padding tokens.
592
+ dropout (`int`, *optional*):
593
+ Attention dropout
594
+ softmax_scale (`float`, *optional*):
595
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
596
+ """
597
+ if not self._flash_attn_uses_top_left_mask:
598
+ causal = self.is_causal
599
+ else:
600
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
601
+ causal = self.is_causal and query_length != 1
602
+ # Contains at least one padding token in the sequence
603
+ if attention_mask is not None:
604
+ batch_size = query_states.shape[0]
605
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
606
+ query_states, key_states, value_states, attention_mask, query_length
607
+ )
608
+
609
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
610
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
611
+ attn_output_unpad = flash_attn_varlen_func(
612
+ query_states,
613
+ key_states,
614
+ value_states,
615
+ cu_seqlens_q=cu_seqlens_q,
616
+ cu_seqlens_k=cu_seqlens_k,
617
+ max_seqlen_q=max_seqlen_in_batch_q,
618
+ max_seqlen_k=max_seqlen_in_batch_k,
619
+ dropout_p=dropout,
620
+ softmax_scale=softmax_scale,
621
+ causal=causal,
622
+ )
623
+
624
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
625
+ else:
626
+ attn_output = flash_attn_func(
627
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
628
+ )
629
+
630
+ return attn_output
631
+
632
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
633
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
634
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
635
+
636
+ key_layer = index_first_axis(
637
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
638
+ )
639
+ value_layer = index_first_axis(
640
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
641
+ )
642
+ if query_length == kv_seq_len:
643
+ query_layer = index_first_axis(
644
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
645
+ )
646
+ cu_seqlens_q = cu_seqlens_k
647
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
648
+ indices_q = indices_k
649
+ elif query_length == 1:
650
+ max_seqlen_in_batch_q = 1
651
+ cu_seqlens_q = torch.arange(
652
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
653
+ ) # There is a memcpy here, that is very bad.
654
+ indices_q = cu_seqlens_q[:-1]
655
+ query_layer = query_layer.squeeze(1)
656
+ else:
657
+ # The -q_len: slice assumes left padding.
658
+ attention_mask = attention_mask[:, -query_length:]
659
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
660
+
661
+ return (
662
+ query_layer,
663
+ key_layer,
664
+ value_layer,
665
+ indices_q,
666
+ (cu_seqlens_q, cu_seqlens_k),
667
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
668
+ )
669
+
670
+
671
+ class MiniCPMSdpaAttention(MiniCPMAttention):
672
+ """
673
+ MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
674
+ `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
675
+ SDPA API.
676
+ """
677
+
678
+ # Adapted from MiniCPMAttention.forward
679
+ def forward(
680
+ self,
681
+ hidden_states: torch.Tensor,
682
+ attention_mask: Optional[torch.Tensor] = None,
683
+ position_ids: Optional[torch.LongTensor] = None,
684
+ past_key_value: Optional[Cache] = None,
685
+ output_attentions: bool = False,
686
+ use_cache: bool = False,
687
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
688
+ if output_attentions:
689
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
690
+ logger.warning_once(
691
+ "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
692
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
693
+ )
694
+ return super().forward(
695
+ hidden_states=hidden_states,
696
+ attention_mask=attention_mask,
697
+ position_ids=position_ids,
698
+ past_key_value=past_key_value,
699
+ output_attentions=output_attentions,
700
+ use_cache=use_cache,
701
+ )
702
+
703
+ bsz, q_len, _ = hidden_states.size()
704
+
705
+ query_states = self.q_proj(hidden_states)
706
+ key_states = self.k_proj(hidden_states)
707
+ value_states = self.v_proj(hidden_states)
708
+
709
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
710
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
711
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
712
+
713
+ kv_seq_len = key_states.shape[-2]
714
+ if past_key_value is not None:
715
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
716
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
717
+
718
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
719
+
720
+ if past_key_value is not None:
721
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
722
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
723
+
724
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
725
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
726
+
727
+ if attention_mask is not None:
728
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
729
+ raise ValueError(
730
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
731
+ )
732
+
733
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
734
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
735
+ if query_states.device.type == "cuda" and attention_mask is not None:
736
+ query_states = query_states.contiguous()
737
+ key_states = key_states.contiguous()
738
+ value_states = value_states.contiguous()
739
+
740
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
741
+ query_states,
742
+ key_states,
743
+ value_states,
744
+ attn_mask=attention_mask,
745
+ dropout_p=self.attention_dropout if self.training else 0.0,
746
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
747
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
748
+ )
749
+
750
+ attn_output = attn_output.transpose(1, 2).contiguous()
751
+ # attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
752
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim)
753
+
754
+ attn_output = self.o_proj(attn_output)
755
+
756
+ return attn_output, None, past_key_value
757
+
758
+
759
+ MINICPM_ATTENTION_CLASSES = {
760
+ "eager": MiniCPMAttention,
761
+ "flash_attention_2": MiniCPMFlashAttention2,
762
+ "sdpa": MiniCPMSdpaAttention,
763
+ }
764
+
765
+
766
+ class MiniCPMDecoderLayer(nn.Module):
767
+ def __init__(self, config: MiniCPMConfig, layer_idx: int):
768
+ super().__init__()
769
+ self.hidden_size = config.hidden_size
770
+ self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
771
+
772
+ self.mlp = MiniCPMMLP(config, layer_idx=layer_idx)
773
+ self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
774
+ self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
775
+
776
+ self.scale_depth = config.scale_depth
777
+ self.num_hidden_layers = config.num_hidden_layers
778
+
779
+ def forward(
780
+ self,
781
+ hidden_states: torch.Tensor,
782
+ attention_mask: Optional[torch.Tensor] = None,
783
+ position_ids: Optional[torch.LongTensor] = None,
784
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
785
+ output_attentions: Optional[bool] = False,
786
+ use_cache: Optional[bool] = False,
787
+ **kwargs,
788
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
789
+ """
790
+ Args:
791
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
792
+ attention_mask (`torch.FloatTensor`, *optional*):
793
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
794
+ query_sequence_length, key_sequence_length)` if default attention is used.
795
+ output_attentions (`bool`, *optional*):
796
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
797
+ returned tensors for more detail.
798
+ use_cache (`bool`, *optional*):
799
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
800
+ (see `past_key_values`).
801
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
802
+ """
803
+ if "padding_mask" in kwargs:
804
+ warnings.warn(
805
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
806
+ )
807
+
808
+ residual = hidden_states
809
+ hidden_states = self.input_layernorm(hidden_states)
810
+ # Self Attention
811
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
812
+ hidden_states=hidden_states,
813
+ attention_mask=attention_mask,
814
+ position_ids=position_ids,
815
+ past_key_value=past_key_value,
816
+ output_attentions=output_attentions,
817
+ use_cache=use_cache,
818
+ **kwargs,
819
+ )
820
+
821
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
822
+
823
+ # Fully Connected
824
+ residual = hidden_states
825
+ hidden_states = self.post_attention_layernorm(hidden_states)
826
+
827
+ hidden_states = self.mlp(hidden_states)
828
+
829
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
830
+
831
+ outputs = (hidden_states,)
832
+
833
+ if output_attentions:
834
+ outputs += (self_attn_weights,)
835
+
836
+ if use_cache:
837
+ outputs += (present_key_value,)
838
+
839
+ return outputs
840
+
841
+
842
+ MINICPM_START_DOCSTRING = r"""
843
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
844
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
845
+ etc.)
846
+
847
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
848
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
849
+ and behavior.
850
+
851
+ Parameters:
852
+ config ([`MiniCPMConfig`]):
853
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
854
+ load the weights associated with the model, only the configuration. Check out the
855
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
856
+ """
857
+
858
+
859
+ @add_start_docstrings(
860
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
861
+ MINICPM_START_DOCSTRING,
862
+ )
863
+ class MiniCPMPreTrainedModel(PreTrainedModel):
864
+ config_class = MiniCPMConfig
865
+ base_model_prefix = "model"
866
+ supports_gradient_checkpointing = True
867
+ _no_split_modules = ["MiniCPMDecoderLayer"]
868
+ _skip_keys_device_placement = "past_key_values"
869
+ _supports_flash_attn_2 = True
870
+ _supports_sdpa = True
871
+ _supports_cache_class = True
872
+
873
+ def _init_weights(self, module):
874
+ std = self.config.initializer_range
875
+ if isinstance(module, nn.Linear):
876
+ module.weight.data.normal_(mean=0.0, std=std)
877
+ if module.bias is not None:
878
+ module.bias.data.zero_()
879
+ elif isinstance(module, nn.Embedding):
880
+ module.weight.data.normal_(mean=0.0, std=std)
881
+ if module.padding_idx is not None:
882
+ module.weight.data[module.padding_idx].zero_()
883
+
884
+
885
+ MINICPM_INPUTS_DOCSTRING = r"""
886
+ Args:
887
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
888
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
889
+ it.
890
+
891
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
892
+ [`PreTrainedTokenizer.__call__`] for details.
893
+
894
+ [What are input IDs?](../glossary#input-ids)
895
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
896
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
897
+
898
+ - 1 for tokens that are **not masked**,
899
+ - 0 for tokens that are **masked**.
900
+
901
+ [What are attention masks?](../glossary#attention-mask)
902
+
903
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
904
+ [`PreTrainedTokenizer.__call__`] for details.
905
+
906
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
907
+ `past_key_values`).
908
+
909
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
910
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
911
+ information on the default strategy.
912
+
913
+ - 1 indicates the head is **not masked**,
914
+ - 0 indicates the head is **masked**.
915
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
916
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
917
+ config.n_positions - 1]`.
918
+
919
+ [What are position IDs?](../glossary#position-ids)
920
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
921
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
922
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
923
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
924
+
925
+ Two formats are allowed:
926
+ - a [`~cache_utils.Cache`] instance;
927
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
928
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
929
+ cache format.
930
+
931
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
932
+ legacy cache format will be returned.
933
+
934
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
935
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
936
+ of shape `(batch_size, sequence_length)`.
937
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
938
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
939
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
940
+ model's internal embedding lookup matrix.
941
+ use_cache (`bool`, *optional*):
942
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
943
+ `past_key_values`).
944
+ output_attentions (`bool`, *optional*):
945
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
946
+ tensors for more detail.
947
+ output_hidden_states (`bool`, *optional*):
948
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
949
+ more detail.
950
+ return_dict (`bool`, *optional*):
951
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
952
+ """
953
+
954
+
955
+ @add_start_docstrings(
956
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
957
+ MINICPM_START_DOCSTRING,
958
+ )
959
+ class MiniCPMModel(MiniCPMPreTrainedModel):
960
+ """
961
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
962
+
963
+ Args:
964
+ config: MiniCPMConfig
965
+ """
966
+
967
+ def __init__(self, config: MiniCPMConfig):
968
+ super().__init__(config)
969
+ self.padding_idx = config.pad_token_id
970
+ self.vocab_size = config.vocab_size
971
+
972
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
973
+ self.layers = nn.ModuleList(
974
+ [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
975
+ )
976
+ self._use_sdpa = config._attn_implementation == "sdpa"
977
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
978
+
979
+ self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
980
+
981
+ self.gradient_checkpointing = False
982
+ # Initialize weights and apply final processing
983
+ self.post_init()
984
+
985
+ def get_input_embeddings(self):
986
+ return self.embed_tokens
987
+
988
+ def set_input_embeddings(self, value):
989
+ self.embed_tokens = value
990
+
991
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
992
+ def forward(
993
+ self,
994
+ input_ids: torch.LongTensor = None,
995
+ attention_mask: Optional[torch.Tensor] = None,
996
+ position_ids: Optional[torch.LongTensor] = None,
997
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
998
+ inputs_embeds: Optional[torch.FloatTensor] = None,
999
+ use_cache: Optional[bool] = None,
1000
+ output_attentions: Optional[bool] = None,
1001
+ output_hidden_states: Optional[bool] = None,
1002
+ return_dict: Optional[bool] = None,
1003
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1004
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1005
+ output_hidden_states = (
1006
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1007
+ )
1008
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1009
+
1010
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1011
+
1012
+ # retrieve input_ids and inputs_embeds
1013
+ if input_ids is not None and inputs_embeds is not None:
1014
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1015
+ elif input_ids is not None:
1016
+ batch_size, seq_length = input_ids.shape[:2]
1017
+ elif inputs_embeds is not None:
1018
+ batch_size, seq_length = inputs_embeds.shape[:2]
1019
+ else:
1020
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1021
+
1022
+ if self.gradient_checkpointing and self.training:
1023
+ if use_cache:
1024
+ logger.warning_once(
1025
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1026
+ )
1027
+ use_cache = False
1028
+
1029
+ past_key_values_length = 0
1030
+ if use_cache:
1031
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1032
+ if use_legacy_cache:
1033
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1034
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1035
+
1036
+ if position_ids is None:
1037
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1038
+ position_ids = torch.arange(
1039
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1040
+ )
1041
+ position_ids = position_ids.unsqueeze(0)
1042
+
1043
+ if inputs_embeds is None:
1044
+ inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
1045
+
1046
+ if self._use_flash_attention_2:
1047
+ # 2d mask is passed through the layers
1048
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1049
+ elif self._use_sdpa and not output_attentions:
1050
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1051
+ # the manual implementation that requires a 4D causal mask in all cases.
1052
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1053
+ attention_mask,
1054
+ (batch_size, seq_length),
1055
+ inputs_embeds,
1056
+ past_key_values_length,
1057
+ )
1058
+ else:
1059
+ # 4d mask is passed through the layers
1060
+ attention_mask = _prepare_4d_causal_attention_mask(
1061
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1062
+ )
1063
+
1064
+ # embed positions
1065
+ hidden_states = inputs_embeds
1066
+
1067
+ # decoder layers
1068
+ all_hidden_states = () if output_hidden_states else None
1069
+ all_self_attns = () if output_attentions else None
1070
+ next_decoder_cache = None
1071
+
1072
+ for decoder_layer in self.layers:
1073
+ if output_hidden_states:
1074
+ all_hidden_states += (hidden_states,)
1075
+
1076
+ if self.gradient_checkpointing and self.training:
1077
+ layer_outputs = self._gradient_checkpointing_func(
1078
+ decoder_layer.__call__,
1079
+ hidden_states,
1080
+ attention_mask,
1081
+ position_ids,
1082
+ past_key_values,
1083
+ output_attentions,
1084
+ use_cache,
1085
+ )
1086
+ else:
1087
+ layer_outputs = decoder_layer(
1088
+ hidden_states,
1089
+ attention_mask=attention_mask,
1090
+ position_ids=position_ids,
1091
+ past_key_value=past_key_values,
1092
+ output_attentions=output_attentions,
1093
+ use_cache=use_cache,
1094
+ )
1095
+
1096
+ hidden_states = layer_outputs[0]
1097
+
1098
+ if use_cache:
1099
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1100
+
1101
+ if output_attentions:
1102
+ all_self_attns += (layer_outputs[1],)
1103
+
1104
+ hidden_states = self.norm(hidden_states)
1105
+
1106
+ # add hidden states from the last decoder layer
1107
+ if output_hidden_states:
1108
+ all_hidden_states += (hidden_states,)
1109
+
1110
+ next_cache = None
1111
+ if use_cache:
1112
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1113
+ if not return_dict:
1114
+ ret = tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1115
+ return ret
1116
+ return BaseModelOutputWithPast(
1117
+ last_hidden_state=hidden_states,
1118
+ past_key_values=next_cache,
1119
+ hidden_states=all_hidden_states,
1120
+ attentions=all_self_attns,
1121
+ )
1122
+
1123
+
1124
+ class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
1125
+ _tied_weights_keys = ["lm_head.weight"]
1126
+
1127
+ def __init__(self, config):
1128
+ super().__init__(config)
1129
+ self.model = MiniCPMModel(config)
1130
+ print(self.model)
1131
+ self.vocab_size = config.vocab_size
1132
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1133
+
1134
+ # Initialize weights and apply final processing
1135
+ self.post_init()
1136
+
1137
+ def get_input_embeddings(self):
1138
+ return self.model.embed_tokens
1139
+
1140
+ def set_input_embeddings(self, value):
1141
+ self.model.embed_tokens = value
1142
+
1143
+ def get_output_embeddings(self):
1144
+ return self.lm_head
1145
+
1146
+ def set_output_embeddings(self, new_embeddings):
1147
+ self.lm_head = new_embeddings
1148
+
1149
+ def set_decoder(self, decoder):
1150
+ self.model = decoder
1151
+
1152
+ def get_decoder(self):
1153
+ return self.model
1154
+
1155
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1156
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1157
+ def forward(
1158
+ self,
1159
+ input_ids: torch.LongTensor = None,
1160
+ attention_mask: Optional[torch.Tensor] = None,
1161
+ position_ids: Optional[torch.LongTensor] = None,
1162
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1163
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1164
+ labels: Optional[torch.LongTensor] = None,
1165
+ use_cache: Optional[bool] = None,
1166
+ output_attentions: Optional[bool] = None,
1167
+ output_hidden_states: Optional[bool] = None,
1168
+ return_dict: Optional[bool] = None,
1169
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1170
+ r"""
1171
+ Args:
1172
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1173
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1174
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1175
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1176
+
1177
+ Returns:
1178
+
1179
+ Example:
1180
+
1181
+ ```python
1182
+ >>> from transformers import AutoTokenizer, MiniCPMForCausalLM
1183
+
1184
+ >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1185
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1186
+
1187
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1188
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1189
+
1190
+ >>> # Generate
1191
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1192
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1193
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1194
+ ```"""
1195
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1196
+ output_hidden_states = (
1197
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1198
+ )
1199
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1200
+
1201
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1202
+ outputs = self.model(
1203
+ input_ids=input_ids,
1204
+ attention_mask=attention_mask,
1205
+ position_ids=position_ids,
1206
+ past_key_values=past_key_values,
1207
+ inputs_embeds=inputs_embeds,
1208
+ use_cache=use_cache,
1209
+ output_attentions=output_attentions,
1210
+ output_hidden_states=output_hidden_states,
1211
+ return_dict=return_dict,
1212
+ )
1213
+
1214
+ hidden_states = outputs[0]
1215
+ if self.config.pretraining_tp > 1:
1216
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1217
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1218
+ logits = torch.cat(logits, dim=-1)
1219
+ else:
1220
+ logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base))
1221
+ logits = logits.float()
1222
+
1223
+ loss = None
1224
+ if labels is not None:
1225
+ # Shift so that tokens < n predict n
1226
+ shift_logits = logits[..., :-1, :].contiguous()
1227
+ shift_labels = labels[..., 1:].contiguous()
1228
+ # Flatten the tokens
1229
+ loss_fct = CrossEntropyLoss()
1230
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1231
+ shift_labels = shift_labels.view(-1)
1232
+ # Enable model parallelism
1233
+ shift_labels = shift_labels.to(shift_logits.device)
1234
+ loss = loss_fct(shift_logits, shift_labels)
1235
+
1236
+ if not return_dict:
1237
+ output = (logits,) + outputs[1:]
1238
+ return (loss,) + output if loss is not None else output
1239
+
1240
+ return CausalLMOutputWithPast(
1241
+ loss=loss,
1242
+ logits=logits,
1243
+ past_key_values=outputs.past_key_values,
1244
+ hidden_states=outputs.hidden_states,
1245
+ attentions=outputs.attentions,
1246
+ )
1247
+
1248
+ def prepare_inputs_for_generation(
1249
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1250
+ ):
1251
+ if past_key_values is not None:
1252
+ if isinstance(past_key_values, Cache):
1253
+ cache_length = past_key_values.get_seq_length()
1254
+ past_length = past_key_values.seen_tokens
1255
+ max_cache_length = past_key_values.get_max_length()
1256
+ else:
1257
+ cache_length = past_length = past_key_values[0][0].shape[2]
1258
+ max_cache_length = None
1259
+
1260
+ # Keep only the unprocessed tokens:
1261
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1262
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1263
+ # input)
1264
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1265
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1266
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1267
+ # input_ids based on the past_length.
1268
+ elif past_length < input_ids.shape[1]:
1269
+ input_ids = input_ids[:, past_length:]
1270
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1271
+
1272
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1273
+ if (
1274
+ max_cache_length is not None
1275
+ and attention_mask is not None
1276
+ and cache_length + input_ids.shape[1] > max_cache_length
1277
+ ):
1278
+ attention_mask = attention_mask[:, -max_cache_length:]
1279
+
1280
+ position_ids = kwargs.get("position_ids", None)
1281
+ if attention_mask is not None and position_ids is None:
1282
+ # create position_ids on the fly for batch generation
1283
+ position_ids = attention_mask.long().cumsum(-1) - 1
1284
+ position_ids.masked_fill_(attention_mask == 0, 1)
1285
+ if past_key_values:
1286
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1287
+
1288
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1289
+ if inputs_embeds is not None and past_key_values is None:
1290
+ model_inputs = {"inputs_embeds": inputs_embeds}
1291
+ else:
1292
+ model_inputs = {"input_ids": input_ids}
1293
+
1294
+ model_inputs.update(
1295
+ {
1296
+ "position_ids": position_ids,
1297
+ "past_key_values": past_key_values,
1298
+ "use_cache": kwargs.get("use_cache"),
1299
+ "attention_mask": attention_mask,
1300
+ }
1301
+ )
1302
+ return model_inputs
1303
+
1304
+ @staticmethod
1305
+ def _reorder_cache(past_key_values, beam_idx):
1306
+ reordered_past = ()
1307
+ for layer_past in past_key_values:
1308
+ reordered_past += (
1309
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1310
+ )
1311
+ return reordered_past
1312
+
1313
+ @torch.inference_mode()
1314
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1315
+ max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
1316
+ **kwargs):
1317
+ if history is None:
1318
+ history = []
1319
+ if logits_processor:
1320
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1321
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1322
+ else:
1323
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1324
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1325
+
1326
+ history.append({"role": role, "content": query})
1327
+ history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
1328
+ inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
1329
+ outputs = self.generate(**inputs, **gen_kwargs)
1330
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1331
+ response = tokenizer.decode(outputs)
1332
+ response = tokenizer.decode(outputs)
1333
+ pattern = re.compile(r".*?(?=<\|im_end\|>)", re.DOTALL)
1334
+ matches = pattern.findall(response)
1335
+ if len(matches) > 0:
1336
+ response = matches[0]
1337
+ history.append({"role": "assistant", "content": response})
1338
+ return response, history
1339
+
1340
+
1341
+ @add_start_docstrings(
1342
+ """
1343
+ The MiniCPM Model transformer with a sequence classification head on top (linear layer).
1344
+
1345
+ [`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1346
+ (e.g. GPT-2) do.
1347
+
1348
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1349
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1350
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1351
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1352
+ each row of the batch).
1353
+ """,
1354
+ MINICPM_START_DOCSTRING,
1355
+ )
1356
+ class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
1357
+ def __init__(self, config):
1358
+ super().__init__(config)
1359
+ self.num_labels = config.num_labels
1360
+ self.model = MiniCPMModel(config)
1361
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1362
+
1363
+ # Initialize weights and apply final processing
1364
+ self.post_init()
1365
+
1366
+ def get_input_embeddings(self):
1367
+ return self.model.embed_tokens
1368
+
1369
+ def set_input_embeddings(self, value):
1370
+ self.model.embed_tokens = value
1371
+
1372
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1373
+ def forward(
1374
+ self,
1375
+ input_ids: torch.LongTensor = None,
1376
+ attention_mask: Optional[torch.Tensor] = None,
1377
+ position_ids: Optional[torch.LongTensor] = None,
1378
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1379
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1380
+ labels: Optional[torch.LongTensor] = None,
1381
+ use_cache: Optional[bool] = None,
1382
+ output_attentions: Optional[bool] = None,
1383
+ output_hidden_states: Optional[bool] = None,
1384
+ return_dict: Optional[bool] = None,
1385
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1386
+ r"""
1387
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1388
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1389
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1390
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1391
+ """
1392
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1393
+
1394
+ transformer_outputs = self.model(
1395
+ input_ids,
1396
+ attention_mask=attention_mask,
1397
+ position_ids=position_ids,
1398
+ past_key_values=past_key_values,
1399
+ inputs_embeds=inputs_embeds,
1400
+ use_cache=use_cache,
1401
+ output_attentions=output_attentions,
1402
+ output_hidden_states=output_hidden_states,
1403
+ return_dict=return_dict,
1404
+ )
1405
+ hidden_states = transformer_outputs[0]
1406
+ logits = self.score(hidden_states)
1407
+
1408
+ if input_ids is not None:
1409
+ batch_size = input_ids.shape[0]
1410
+ else:
1411
+ batch_size = inputs_embeds.shape[0]
1412
+
1413
+ if self.config.pad_token_id is None and batch_size != 1:
1414
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1415
+ if self.config.pad_token_id is None:
1416
+ sequence_lengths = -1
1417
+ else:
1418
+ if input_ids is not None:
1419
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1420
+ logits.device
1421
+ )
1422
+ else:
1423
+ sequence_lengths = -1
1424
+
1425
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1426
+
1427
+ loss = None
1428
+ if labels is not None:
1429
+ labels = labels.to(logits.device)
1430
+ if self.config.problem_type is None:
1431
+ if self.num_labels == 1:
1432
+ self.config.problem_type = "regression"
1433
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1434
+ self.config.problem_type = "single_label_classification"
1435
+ else:
1436
+ self.config.problem_type = "multi_label_classification"
1437
+
1438
+ if self.config.problem_type == "regression":
1439
+ loss_fct = MSELoss()
1440
+ if self.num_labels == 1:
1441
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1442
+ else:
1443
+ loss = loss_fct(pooled_logits, labels)
1444
+ elif self.config.problem_type == "single_label_classification":
1445
+ loss_fct = CrossEntropyLoss()
1446
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1447
+ elif self.config.problem_type == "multi_label_classification":
1448
+ loss_fct = BCEWithLogitsLoss()
1449
+ loss = loss_fct(pooled_logits, labels)
1450
+ if not return_dict:
1451
+ output = (pooled_logits,) + transformer_outputs[1:]
1452
+ return ((loss,) + output) if loss is not None else output
1453
+
1454
+ return SequenceClassifierOutputWithPast(
1455
+ loss=loss,
1456
+ logits=pooled_logits,
1457
+ past_key_values=transformer_outputs.past_key_values,
1458
+ hidden_states=transformer_outputs.hidden_states,
1459
+ attentions=transformer_outputs.attentions,
1460
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56e54bad1c25fcb5a05a613e4c3864436bffec5f3795907e00b3c02a7dd2bcba
3
+ size 4184221174
special_tokens_map.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_end|>",
4
+ "▁<PRE>",
5
+ "▁<MID>",
6
+ "<|tool_call|>",
7
+ "<|im_start|>",
8
+ "▁<EOT>",
9
+ "▁<SUF>"
10
+ ],
11
+ "bos_token": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "eos_token": {
19
+ "content": "</s>",
20
+ "lstrip": false,
21
+ "normalized": false,
22
+ "rstrip": false,
23
+ "single_word": false
24
+ },
25
+ "unk_token": {
26
+ "content": "<unk>",
27
+ "lstrip": false,
28
+ "normalized": false,
29
+ "rstrip": false,
30
+ "single_word": false
31
+ }
32
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1de17e189380b2e5d9f2d7fe878022077be85cc473a900c3259a35eccead4f79
3
+ size 11178709
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9aafcd7da1f5611dab6be545db74d5552a2ccc9c2a12c72ea7be63aac4a25d7
3
+ size 1994871
tokenizer_config.json ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "122753": {
31
+ "content": "<|im_end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "122754": {
39
+ "content": "▁<PRE>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "122755": {
47
+ "content": "▁<MID>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "122756": {
55
+ "content": "<|tool_call|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "122757": {
63
+ "content": "<|im_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "122758": {
71
+ "content": "▁<EOT>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "122759": {
79
+ "content": "▁<SUF>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ }
86
+ },
87
+ "additional_special_tokens": [
88
+ "<|im_end|>",
89
+ "▁<PRE>",
90
+ "▁<MID>",
91
+ "<|tool_call|>",
92
+ "<|im_start|>",
93
+ "▁<EOT>",
94
+ "▁<SUF>"
95
+ ],
96
+ "bos_token": "<s>",
97
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
98
+ "clean_up_tokenization_spaces": false,
99
+ "eos_token": "</s>",
100
+ "legacy": true,
101
+ "max_length": 131072,
102
+ "model_max_length": 131072,
103
+ "pad_token": null,
104
+ "sp_model_kwargs": {},
105
+ "spaces_between_special_tokens": false,
106
+ "tokenizer_class": "LlamaTokenizer",
107
+ "truncation": true,
108
+ "unk_token": "<unk>",
109
+ "use_default_system_prompt": false
110
+ }