File size: 1,933 Bytes
9f71e9f
3b17e2b
 
fef0c48
 
3b17e2b
01da5eb
3b17e2b
 
fef0c48
01da5eb
 
3b17e2b
fef0c48
01da5eb
 
 
 
 
 
 
 
 
 
 
 
 
4223c8f
9f71e9f
3b17e2b
fef0c48
 
3b17e2b
fef0c48
3b17e2b
fef0c48
01da5eb
4223c8f
 
3b17e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef0c48
 
3b17e2b
 
fef0c48
 
 
3b17e2b
01da5eb
 
 
 
4223c8f
 
01da5eb
 
3b17e2b
 
4223c8f
fef0c48
 
4223c8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
language:
- ml
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Malayalam - Kavya Manohar
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 13
      type: mozilla-foundation/common_voice_13_0
      config: ml
      split: test
      args: 'config: ml, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 86.1788617886179
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Malayalam - Kavya Manohar

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5060
- Wer: 86.1789

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0403        | 7.81  | 250  | 0.4193          | 87.1080 |
| 0.0094        | 15.62 | 500  | 0.5060          | 86.1789 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0