keith-taylor
commited on
Commit
·
eb36611
1
Parent(s):
f85f97f
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 232.93 +/- 65.27
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fee7362f200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee7362f290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7362f320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7362f3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fee7362f440>", "forward": "<function ActorCriticPolicy.forward at 0x7fee7362f4d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7362f560>", "_predict": "<function ActorCriticPolicy._predict at 0x7fee7362f5f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7362f680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7362f710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7362f7a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fee7366dea0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651850598.9201546, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM045DtclxS6RsAVOPosPzODrg+7g+kvtwAAgD8AAIA/MzjwPI9OWLq3Nb05GmliNEbSnjjCL924AACAPwAAgD8zyEG9e26Sum2bMb51vJQyVisCOuIYZrIAAAAAAAAAAM1oBbyf7eO7CecSvm+pejxurwm9GFT3vQAAgD8AAIA/GuVXvc+aLT6bUXo+FPaHvsaT8z1dJ848AAAAAAAAAADNZCa8H0vIOrwVJ788Tx++woPNvBJAID8AAIA/AAAAAGaSqLzhCqs5poPIvC49SLRh4Bq73qCnMwAAgD8AAIA/Dd6XPY8+VT2q6r+8KiybvnIpYD6HEBC9AAAAAAAAAADmGUM+SxHiPqRTCLypJ+O+sKVYPkUgibwAAAAAAAAAAMZqaT533wM/paSivfrN2b6SuSY+2uePvQAAAAAAAAAAmmzSvMM5Qbr6GLezsbaBriHWzLr/468zAACAPwAAgD+a4P08KeBvuis63Lw8T9oy49UhOl3FoLMAAIA/AAAAAGYasjvcYp4+7lHoPIALvr63fic9XVX3PAAAAAAAAAAAhnLgPmO9Oj9Td2Q+mkshv2smyj7n3Zc8AAAAAAAAAACz7TW994Q5Ptw5nT2cHLa+ZrP0PR9prT0AAAAAAAAAAGZqjj2bM4a85rPVvY5XXD1Syea9H+gpPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqio0EEu5cECUhpRSlIwBbJRL5YwBdJRHQJn30Fjd56d1fZQoaAZoCWgPQwhSnKOODlBwQJSGlFKUaBVL/2gWR0CZ9/RaX8fndX2UKGgGaAloD0MIB35Uw/5/b0CUhpRSlGgVS+loFkdAmfgttMwlB3V9lChoBmgJaA9DCNKrAUoDhHBAlIaUUpRoFU0AAWgWR0CZ+GRcu8K5dX2UKGgGaAloD0MIXqJ6a2CNTkCUhpRSlGgVS75oFkdAmfmnTI/7i3V9lChoBmgJaA9DCM8UOq8xwXNAlIaUUpRoFU1aAWgWR0CZ+g9nscABdX2UKGgGaAloD0MIJuFCHsG1PkCUhpRSlGgVS6RoFkdAmfq4WtU4rHV9lChoBmgJaA9DCBoUzQMYaHJAlIaUUpRoFUv8aBZHQJn7GOR1X/51fZQoaAZoCWgPQwjsMCb9fTlzQJSGlFKUaBVNHQFoFkdAmfsyIDYAbXV9lChoBmgJaA9DCNp0BHCzSHNAlIaUUpRoFUvjaBZHQJn72X5WRzR1fZQoaAZoCWgPQwjUEFX4c1pxQJSGlFKUaBVLy2gWR0CZ/DKSPluFdX2UKGgGaAloD0MIVFVoIFYtcECUhpRSlGgVS/toFkdAmfxFDrqt5nV9lChoBmgJaA9DCC15PC0/iHBAlIaUUpRoFU0AAWgWR0CZ/InJkoWpdX2UKGgGaAloD0MIuFonLkfbcUCUhpRSlGgVS9doFkdAmf1Gk8A7xXV9lChoBmgJaA9DCMwlVdsNTHJAlIaUUpRoFUv8aBZHQJn9kyckMTh1fZQoaAZoCWgPQwgT8kHPpk1yQJSGlFKUaBVNAgFoFkdAmf309+w1SHV9lChoBmgJaA9DCMJLcOqDt29AlIaUUpRoFUvsaBZHQJn+IQNCqp91fZQoaAZoCWgPQwhBt5c0BgZxQJSGlFKUaBVNHQFoFkdAmf4zUy57PnV9lChoBmgJaA9DCBMNUvAUsHFAlIaUUpRoFU05AWgWR0CZ/mCuEEkjdX2UKGgGaAloD0MIzy10JYK8cECUhpRSlGgVTToBaBZHQJn/VZntfHB1fZQoaAZoCWgPQwjvkGKAxKJwQJSGlFKUaBVL82gWR0CZ/41yeZogdX2UKGgGaAloD0MIGtzWFp6hT0CUhpRSlGgVS8toFkdAmf+q+rU9ZHV9lChoBmgJaA9DCHmVtU3x729AlIaUUpRoFUvraBZHQJn/vupjtol1fZQoaAZoCWgPQwiOlC2SdmJuQJSGlFKUaBVL52gWR0CaALSG8EmqdX2UKGgGaAloD0MI2GSNekjjc0CUhpRSlGgVS/5oFkdAmgErsByS3nV9lChoBmgJaA9DCIC4q1cR/W9AlIaUUpRoFUvqaBZHQJoB14zJp351fZQoaAZoCWgPQwguHAjJAvpHQJSGlFKUaBVLqWgWR0CaAdf6oESvdX2UKGgGaAloD0MIgXueP63BckCUhpRSlGgVTQ4BaBZHQJoCXFwT/Q11fZQoaAZoCWgPQwgU6ukj8LtxQJSGlFKUaBVL9mgWR0CaAmZtvXK9dX2UKGgGaAloD0MICJChYwdBc0CUhpRSlGgVS/VoFkdAmgMb2USqVHV9lChoBmgJaA9DCA4viEhNnXFAlIaUUpRoFUvhaBZHQJoDtsFdLQJ1fZQoaAZoCWgPQwh9PV+zXH1wQJSGlFKUaBVNNgFoFkdAmgO1a8pTdnV9lChoBmgJaA9DCCu+ofDZvG9AlIaUUpRoFU0DAWgWR0CaA8HY6GQCdX2UKGgGaAloD0MIa5+Ox0zuckCUhpRSlGgVS/FoFkdAmgPnPAwfyXV9lChoBmgJaA9DCEMglzhyTHNAlIaUUpRoFU0FAWgWR0CaBEiRGMGYdX2UKGgGaAloD0MIiiE5mTg5cECUhpRSlGgVS+9oFkdAmgVPjbSJCXV9lChoBmgJaA9DCEHyzqHMuHJAlIaUUpRoFUvraBZHQJoFV9G7SRd1fZQoaAZoCWgPQwgbDeAtULJxQJSGlFKUaBVL62gWR0CaBW3RG+bmdX2UKGgGaAloD0MIKZfGLzwKdECUhpRSlGgVS/9oFkdAmgV5iy6cy3V9lChoBmgJaA9DCFaBWgxeD3FAlIaUUpRoFUvnaBZHQJoGVr30wrV1fZQoaAZoCWgPQwheoKTAgoduQJSGlFKUaBVLyGgWR0CaBqmKqGUOdX2UKGgGaAloD0MIg09z8iLFTkCUhpRSlGgVS51oFkdAmgbWqT8pC3V9lChoBmgJaA9DCF9AL9y5BnJAlIaUUpRoFUvNaBZHQJoHP+uNgjR1fZQoaAZoCWgPQwgeMuVDkFdzQJSGlFKUaBVNCQFoFkdAmggw7cO9WnV9lChoBmgJaA9DCFGhurn4s3NAlIaUUpRoFUvGaBZHQJoIZ3np0Op1fZQoaAZoCWgPQwjy7PKtTwNyQJSGlFKUaBVL02gWR0CaCK7l7tzCdX2UKGgGaAloD0MIf9+/ebG/ckCUhpRSlGgVTTIBaBZHQJoJ4Rcu8K51fZQoaAZoCWgPQwg42QbuAAFzQJSGlFKUaBVL62gWR0CaCge6I3zddX2UKGgGaAloD0MIYW9iSE7dcECUhpRSlGgVS9JoFkdAmgqPWH1vl3V9lChoBmgJaA9DCJ5eKcsQq0dAlIaUUpRoFUupaBZHQJoKnM1TBIp1fZQoaAZoCWgPQwjmywuwD5xxQJSGlFKUaBVNHAFoFkdAmgrj6BRQ8HV9lChoBmgJaA9DCDqy8ssg2XBAlIaUUpRoFUv4aBZHQJoLfmq5sj51fZQoaAZoCWgPQwi2+BQAI7xxQJSGlFKUaBVNYgFoFkdAmgx0+HJtBXV9lChoBmgJaA9DCC1agLaVpnBAlIaUUpRoFUvpaBZHQJoMmVqveP91fZQoaAZoCWgPQwiCrRIsDoFxQJSGlFKUaBVNHgFoFkdAmgyXsC1Z1XV9lChoBmgJaA9DCFOVtrjGhnBAlIaUUpRoFUvUaBZHQJoMtbD/EO11fZQoaAZoCWgPQwi9VdehmuxRQJSGlFKUaBVLyWgWR0CaDWXAM2FWdX2UKGgGaAloD0MIdES+S6kDc0CUhpRSlGgVTQgBaBZHQJoNiTwDvE11fZQoaAZoCWgPQwjk+KHSSKxwQJSGlFKUaBVL8mgWR0CaDrDf3vhIdX2UKGgGaAloD0MIlWbzOAyqckCUhpRSlGgVTXIBaBZHQJoOxyS3b211fZQoaAZoCWgPQwhXfEPhM7NxQJSGlFKUaBVL0GgWR0CaD2LTx5LRdX2UKGgGaAloD0MIs0EmGXlBckCUhpRSlGgVS+FoFkdAmg+zaPCEYnV9lChoBmgJaA9DCA02dR4VDnBAlIaUUpRoFU0QAWgWR0CaD8hhYvFndX2UKGgGaAloD0MILsbAOg4vcUCUhpRSlGgVS+hoFkdAmhB8FQl8gXV9lChoBmgJaA9DCEfmkT9Y0HFAlIaUUpRoFUvvaBZHQJoQnONYKY11fZQoaAZoCWgPQwi6aTNOQ7VvQJSGlFKUaBVL8mgWR0CaEPuf29L6dX2UKGgGaAloD0MIUtSZe4jgcECUhpRSlGgVS+FoFkdAmhEny3CsO3V9lChoBmgJaA9DCLlvtU7cNnJAlIaUUpRoFUvKaBZHQJoRmKhtcfN1fZQoaAZoCWgPQwgkfO9v0M5KQJSGlFKUaBVLq2gWR0CaEcgxrSE2dX2UKGgGaAloD0MISE+RQwTxckCUhpRSlGgVS+xoFkdAmhJNzjm0V3V9lChoBmgJaA9DCLecS3HVj3FAlIaUUpRoFUv2aBZHQJoSwjt5UtJ1fZQoaAZoCWgPQwjMejGUE9pxQJSGlFKUaBVL/mgWR0CaEtiHqNZNdX2UKGgGaAloD0MIExCTcKH7bkCUhpRSlGgVS/loFkdAmhOB+OOsDHV9lChoBmgJaA9DCM9Nm3Ga1nFAlIaUUpRoFUvvaBZHQJoUkPxx1gZ1fZQoaAZoCWgPQwjfpj/7EWlwQJSGlFKUaBVL3GgWR0CaFK1n/T9bdX2UKGgGaAloD0MIZcbbSu+EcUCUhpRSlGgVS+FoFkdAmhUUmICU5nV9lChoBmgJaA9DCOyEl+AUfnNAlIaUUpRoFU0kAWgWR0CaFdw4bS7YdX2UKGgGaAloD0MIdsWM8PZ+ckCUhpRSlGgVS/5oFkdAmhX2Nm16V3V9lChoBmgJaA9DCMi3dw26ZHFAlIaUUpRoFUvNaBZHQJoWM6Mir1d1fZQoaAZoCWgPQwjv/niv2jdyQJSGlFKUaBVL12gWR0CaFkYqXnhbdX2UKGgGaAloD0MIs874vrghbkCUhpRSlGgVS/loFkdAmhacO9WZJHV9lChoBmgJaA9DCDlf7L14CHNAlIaUUpRoFUv2aBZHQJoWqYfGMn91fZQoaAZoCWgPQwjTaHIxRrxwQJSGlFKUaBVL1mgWR0CaFxadtl7MdX2UKGgGaAloD0MISbn7HF9Qc0CUhpRSlGgVS+5oFkdAmhd0I1LrX3V9lChoBmgJaA9DCOmayTdbt3BAlIaUUpRoFUv9aBZHQJoYgvIwM6R1fZQoaAZoCWgPQwi6hhkaj5RyQJSGlFKUaBVNGwFoFkdAmhoAKfFrEnV9lChoBmgJaA9DCMiW5etyq3FAlIaUUpRoFUvRaBZHQJoaBreqJdl1fZQoaAZoCWgPQwibPdAKDLViQJSGlFKUaBVN6ANoFkdAmhofq9oN/nV9lChoBmgJaA9DCAA3ixcL829AlIaUUpRoFU0NAWgWR0CaGmP91loUdX2UKGgGaAloD0MI+1qXGqF2bkCUhpRSlGgVS+doFkdAmhqG0u14PnV9lChoBmgJaA9DCNfep6rQwHFAlIaUUpRoFUvOaBZHQJobJ2St/4J1fZQoaAZoCWgPQwgDsWzmUJBxQJSGlFKUaBVLwmgWR0CaG5wpvxYrdX2UKGgGaAloD0MISb4SSMmHcUCUhpRSlGgVTQQBaBZHQJob1E2HclB1fZQoaAZoCWgPQwijrrX3KR9xQJSGlFKUaBVL0mgWR0CaHBb7CSA6dX2UKGgGaAloD0MIW7OVl/zhbkCUhpRSlGgVS/JoFkdAmhxthJAdGXV9lChoBmgJaA9DCG3lJf/TFnFAlIaUUpRoFUvwaBZHQJoccsVclgN1fZQoaAZoCWgPQwgW3A94YLRwQJSGlFKUaBVL/2gWR0CaHIRSgoPTdX2UKGgGaAloD0MIVrjlI2kOcUCUhpRSlGgVS/VoFkdAmh20DEFW4nV9lChoBmgJaA9DCK6ek963EW9AlIaUUpRoFU22AWgWR0CaHcyp71IzdX2UKGgGaAloD0MICttPxvg4cUCUhpRSlGgVTQoBaBZHQJod1W/8EV51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 276, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24d8fe81efce0bc0ac59c47fc17fbf56f5f580abf5b6c5f80efbcfbeb6b684f2
|
3 |
+
size 144019
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fee7362f200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fee7362f290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fee7362f320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fee7362f3b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fee7362f440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fee7362f4d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fee7362f560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fee7362f5f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fee7362f680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fee7362f710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fee7362f7a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fee7366dea0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1507328,
|
46 |
+
"_total_timesteps": 1500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651850598.9201546,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM045DtclxS6RsAVOPosPzODrg+7g+kvtwAAgD8AAIA/MzjwPI9OWLq3Nb05GmliNEbSnjjCL924AACAPwAAgD8zyEG9e26Sum2bMb51vJQyVisCOuIYZrIAAAAAAAAAAM1oBbyf7eO7CecSvm+pejxurwm9GFT3vQAAgD8AAIA/GuVXvc+aLT6bUXo+FPaHvsaT8z1dJ848AAAAAAAAAADNZCa8H0vIOrwVJ788Tx++woPNvBJAID8AAIA/AAAAAGaSqLzhCqs5poPIvC49SLRh4Bq73qCnMwAAgD8AAIA/Dd6XPY8+VT2q6r+8KiybvnIpYD6HEBC9AAAAAAAAAADmGUM+SxHiPqRTCLypJ+O+sKVYPkUgibwAAAAAAAAAAMZqaT533wM/paSivfrN2b6SuSY+2uePvQAAAAAAAAAAmmzSvMM5Qbr6GLezsbaBriHWzLr/468zAACAPwAAgD+a4P08KeBvuis63Lw8T9oy49UhOl3FoLMAAIA/AAAAAGYasjvcYp4+7lHoPIALvr63fic9XVX3PAAAAAAAAAAAhnLgPmO9Oj9Td2Q+mkshv2smyj7n3Zc8AAAAAAAAAACz7TW994Q5Ptw5nT2cHLa+ZrP0PR9prT0AAAAAAAAAAGZqjj2bM4a85rPVvY5XXD1Syea9H+gpPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.004885333333333408,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVOBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqio0EEu5cECUhpRSlIwBbJRL5YwBdJRHQJn30Fjd56d1fZQoaAZoCWgPQwhSnKOODlBwQJSGlFKUaBVL/2gWR0CZ9/RaX8fndX2UKGgGaAloD0MIB35Uw/5/b0CUhpRSlGgVS+loFkdAmfgttMwlB3V9lChoBmgJaA9DCNKrAUoDhHBAlIaUUpRoFU0AAWgWR0CZ+GRcu8K5dX2UKGgGaAloD0MIXqJ6a2CNTkCUhpRSlGgVS75oFkdAmfmnTI/7i3V9lChoBmgJaA9DCM8UOq8xwXNAlIaUUpRoFU1aAWgWR0CZ+g9nscABdX2UKGgGaAloD0MIJuFCHsG1PkCUhpRSlGgVS6RoFkdAmfq4WtU4rHV9lChoBmgJaA9DCBoUzQMYaHJAlIaUUpRoFUv8aBZHQJn7GOR1X/51fZQoaAZoCWgPQwjsMCb9fTlzQJSGlFKUaBVNHQFoFkdAmfsyIDYAbXV9lChoBmgJaA9DCNp0BHCzSHNAlIaUUpRoFUvjaBZHQJn72X5WRzR1fZQoaAZoCWgPQwjUEFX4c1pxQJSGlFKUaBVLy2gWR0CZ/DKSPluFdX2UKGgGaAloD0MIVFVoIFYtcECUhpRSlGgVS/toFkdAmfxFDrqt5nV9lChoBmgJaA9DCC15PC0/iHBAlIaUUpRoFU0AAWgWR0CZ/InJkoWpdX2UKGgGaAloD0MIuFonLkfbcUCUhpRSlGgVS9doFkdAmf1Gk8A7xXV9lChoBmgJaA9DCMwlVdsNTHJAlIaUUpRoFUv8aBZHQJn9kyckMTh1fZQoaAZoCWgPQwgT8kHPpk1yQJSGlFKUaBVNAgFoFkdAmf309+w1SHV9lChoBmgJaA9DCMJLcOqDt29AlIaUUpRoFUvsaBZHQJn+IQNCqp91fZQoaAZoCWgPQwhBt5c0BgZxQJSGlFKUaBVNHQFoFkdAmf4zUy57PnV9lChoBmgJaA9DCBMNUvAUsHFAlIaUUpRoFU05AWgWR0CZ/mCuEEkjdX2UKGgGaAloD0MIzy10JYK8cECUhpRSlGgVTToBaBZHQJn/VZntfHB1fZQoaAZoCWgPQwjvkGKAxKJwQJSGlFKUaBVL82gWR0CZ/41yeZogdX2UKGgGaAloD0MIGtzWFp6hT0CUhpRSlGgVS8toFkdAmf+q+rU9ZHV9lChoBmgJaA9DCHmVtU3x729AlIaUUpRoFUvraBZHQJn/vupjtol1fZQoaAZoCWgPQwiOlC2SdmJuQJSGlFKUaBVL52gWR0CaALSG8EmqdX2UKGgGaAloD0MI2GSNekjjc0CUhpRSlGgVS/5oFkdAmgErsByS3nV9lChoBmgJaA9DCIC4q1cR/W9AlIaUUpRoFUvqaBZHQJoB14zJp351fZQoaAZoCWgPQwguHAjJAvpHQJSGlFKUaBVLqWgWR0CaAdf6oESvdX2UKGgGaAloD0MIgXueP63BckCUhpRSlGgVTQ4BaBZHQJoCXFwT/Q11fZQoaAZoCWgPQwgU6ukj8LtxQJSGlFKUaBVL9mgWR0CaAmZtvXK9dX2UKGgGaAloD0MICJChYwdBc0CUhpRSlGgVS/VoFkdAmgMb2USqVHV9lChoBmgJaA9DCA4viEhNnXFAlIaUUpRoFUvhaBZHQJoDtsFdLQJ1fZQoaAZoCWgPQwh9PV+zXH1wQJSGlFKUaBVNNgFoFkdAmgO1a8pTdnV9lChoBmgJaA9DCCu+ofDZvG9AlIaUUpRoFU0DAWgWR0CaA8HY6GQCdX2UKGgGaAloD0MIa5+Ox0zuckCUhpRSlGgVS/FoFkdAmgPnPAwfyXV9lChoBmgJaA9DCEMglzhyTHNAlIaUUpRoFU0FAWgWR0CaBEiRGMGYdX2UKGgGaAloD0MIiiE5mTg5cECUhpRSlGgVS+9oFkdAmgVPjbSJCXV9lChoBmgJaA9DCEHyzqHMuHJAlIaUUpRoFUvraBZHQJoFV9G7SRd1fZQoaAZoCWgPQwgbDeAtULJxQJSGlFKUaBVL62gWR0CaBW3RG+bmdX2UKGgGaAloD0MIKZfGLzwKdECUhpRSlGgVS/9oFkdAmgV5iy6cy3V9lChoBmgJaA9DCFaBWgxeD3FAlIaUUpRoFUvnaBZHQJoGVr30wrV1fZQoaAZoCWgPQwheoKTAgoduQJSGlFKUaBVLyGgWR0CaBqmKqGUOdX2UKGgGaAloD0MIg09z8iLFTkCUhpRSlGgVS51oFkdAmgbWqT8pC3V9lChoBmgJaA9DCF9AL9y5BnJAlIaUUpRoFUvNaBZHQJoHP+uNgjR1fZQoaAZoCWgPQwgeMuVDkFdzQJSGlFKUaBVNCQFoFkdAmggw7cO9WnV9lChoBmgJaA9DCFGhurn4s3NAlIaUUpRoFUvGaBZHQJoIZ3np0Op1fZQoaAZoCWgPQwjy7PKtTwNyQJSGlFKUaBVL02gWR0CaCK7l7tzCdX2UKGgGaAloD0MIf9+/ebG/ckCUhpRSlGgVTTIBaBZHQJoJ4Rcu8K51fZQoaAZoCWgPQwg42QbuAAFzQJSGlFKUaBVL62gWR0CaCge6I3zddX2UKGgGaAloD0MIYW9iSE7dcECUhpRSlGgVS9JoFkdAmgqPWH1vl3V9lChoBmgJaA9DCJ5eKcsQq0dAlIaUUpRoFUupaBZHQJoKnM1TBIp1fZQoaAZoCWgPQwjmywuwD5xxQJSGlFKUaBVNHAFoFkdAmgrj6BRQ8HV9lChoBmgJaA9DCDqy8ssg2XBAlIaUUpRoFUv4aBZHQJoLfmq5sj51fZQoaAZoCWgPQwi2+BQAI7xxQJSGlFKUaBVNYgFoFkdAmgx0+HJtBXV9lChoBmgJaA9DCC1agLaVpnBAlIaUUpRoFUvpaBZHQJoMmVqveP91fZQoaAZoCWgPQwiCrRIsDoFxQJSGlFKUaBVNHgFoFkdAmgyXsC1Z1XV9lChoBmgJaA9DCFOVtrjGhnBAlIaUUpRoFUvUaBZHQJoMtbD/EO11fZQoaAZoCWgPQwi9VdehmuxRQJSGlFKUaBVLyWgWR0CaDWXAM2FWdX2UKGgGaAloD0MIdES+S6kDc0CUhpRSlGgVTQgBaBZHQJoNiTwDvE11fZQoaAZoCWgPQwjk+KHSSKxwQJSGlFKUaBVL8mgWR0CaDrDf3vhIdX2UKGgGaAloD0MIlWbzOAyqckCUhpRSlGgVTXIBaBZHQJoOxyS3b211fZQoaAZoCWgPQwhXfEPhM7NxQJSGlFKUaBVL0GgWR0CaD2LTx5LRdX2UKGgGaAloD0MIs0EmGXlBckCUhpRSlGgVS+FoFkdAmg+zaPCEYnV9lChoBmgJaA9DCA02dR4VDnBAlIaUUpRoFU0QAWgWR0CaD8hhYvFndX2UKGgGaAloD0MILsbAOg4vcUCUhpRSlGgVS+hoFkdAmhB8FQl8gXV9lChoBmgJaA9DCEfmkT9Y0HFAlIaUUpRoFUvvaBZHQJoQnONYKY11fZQoaAZoCWgPQwi6aTNOQ7VvQJSGlFKUaBVL8mgWR0CaEPuf29L6dX2UKGgGaAloD0MIUtSZe4jgcECUhpRSlGgVS+FoFkdAmhEny3CsO3V9lChoBmgJaA9DCLlvtU7cNnJAlIaUUpRoFUvKaBZHQJoRmKhtcfN1fZQoaAZoCWgPQwgkfO9v0M5KQJSGlFKUaBVLq2gWR0CaEcgxrSE2dX2UKGgGaAloD0MISE+RQwTxckCUhpRSlGgVS+xoFkdAmhJNzjm0V3V9lChoBmgJaA9DCLecS3HVj3FAlIaUUpRoFUv2aBZHQJoSwjt5UtJ1fZQoaAZoCWgPQwjMejGUE9pxQJSGlFKUaBVL/mgWR0CaEtiHqNZNdX2UKGgGaAloD0MIExCTcKH7bkCUhpRSlGgVS/loFkdAmhOB+OOsDHV9lChoBmgJaA9DCM9Nm3Ga1nFAlIaUUpRoFUvvaBZHQJoUkPxx1gZ1fZQoaAZoCWgPQwjfpj/7EWlwQJSGlFKUaBVL3GgWR0CaFK1n/T9bdX2UKGgGaAloD0MIZcbbSu+EcUCUhpRSlGgVS+FoFkdAmhUUmICU5nV9lChoBmgJaA9DCOyEl+AUfnNAlIaUUpRoFU0kAWgWR0CaFdw4bS7YdX2UKGgGaAloD0MIdsWM8PZ+ckCUhpRSlGgVS/5oFkdAmhX2Nm16V3V9lChoBmgJaA9DCMi3dw26ZHFAlIaUUpRoFUvNaBZHQJoWM6Mir1d1fZQoaAZoCWgPQwjv/niv2jdyQJSGlFKUaBVL12gWR0CaFkYqXnhbdX2UKGgGaAloD0MIs874vrghbkCUhpRSlGgVS/loFkdAmhacO9WZJHV9lChoBmgJaA9DCDlf7L14CHNAlIaUUpRoFUv2aBZHQJoWqYfGMn91fZQoaAZoCWgPQwjTaHIxRrxwQJSGlFKUaBVL1mgWR0CaFxadtl7MdX2UKGgGaAloD0MISbn7HF9Qc0CUhpRSlGgVS+5oFkdAmhd0I1LrX3V9lChoBmgJaA9DCOmayTdbt3BAlIaUUpRoFUv9aBZHQJoYgvIwM6R1fZQoaAZoCWgPQwi6hhkaj5RyQJSGlFKUaBVNGwFoFkdAmhoAKfFrEnV9lChoBmgJaA9DCMiW5etyq3FAlIaUUpRoFUvRaBZHQJoaBreqJdl1fZQoaAZoCWgPQwibPdAKDLViQJSGlFKUaBVN6ANoFkdAmhofq9oN/nV9lChoBmgJaA9DCAA3ixcL829AlIaUUpRoFU0NAWgWR0CaGmP91loUdX2UKGgGaAloD0MI+1qXGqF2bkCUhpRSlGgVS+doFkdAmhqG0u14PnV9lChoBmgJaA9DCNfep6rQwHFAlIaUUpRoFUvOaBZHQJobJ2St/4J1fZQoaAZoCWgPQwgDsWzmUJBxQJSGlFKUaBVLwmgWR0CaG5wpvxYrdX2UKGgGaAloD0MISb4SSMmHcUCUhpRSlGgVTQQBaBZHQJob1E2HclB1fZQoaAZoCWgPQwijrrX3KR9xQJSGlFKUaBVL0mgWR0CaHBb7CSA6dX2UKGgGaAloD0MIW7OVl/zhbkCUhpRSlGgVS/JoFkdAmhxthJAdGXV9lChoBmgJaA9DCG3lJf/TFnFAlIaUUpRoFUvwaBZHQJoccsVclgN1fZQoaAZoCWgPQwgW3A94YLRwQJSGlFKUaBVL/2gWR0CaHIRSgoPTdX2UKGgGaAloD0MIVrjlI2kOcUCUhpRSlGgVS/VoFkdAmh20DEFW4nV9lChoBmgJaA9DCK6ek963EW9AlIaUUpRoFU22AWgWR0CaHcyp71IzdX2UKGgGaAloD0MICttPxvg4cUCUhpRSlGgVTQoBaBZHQJod1W/8EV51ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 276,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.9999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 6,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7ae059992a03f901cface1e7307713a5863b0c5aab474a0cf4f6b4823eb62ce
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9707f8410baeebf56105d987f266ce373ce5d8b31f5b4e743e020ae6cd18917
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d66b77c2991b0e7705e40cba1cdea35fc50bb3fefcd6ae3bbfb39e54e2f30404
|
3 |
+
size 233850
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 232.93300233584463, "std_reward": 65.27163955835485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T15:53:22.121230"}
|