File size: 4,825 Bytes
4de5c1a 70e332b 4de5c1a dca552b 8f67c9a 8c1843c 8f67c9a 0c10934 8f67c9a dca552b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
library_name: keras-hub
tags:
- image-segmentation
- keras
---
### Model Overview
A Keras model implementing the MixTransformer architecture to be used as a backbone for the SegFormer architecture. This model is supported in both KerasCV and KerasHub. KerasCV will no longer be actively developed, so please try to use KerasHub.
References:
- [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203) # noqa: E501
- [Based on the TensorFlow implementation from DeepVision](https://github.com/DavidLandup0/deepvision/tree/main/deepvision/models/classification/mix_transformer) # noqa: E501
## Links
* [MiT Quickstart Notebook: coming soon]()
* [MiT API Documentation: coming soon]()
## Installation
Keras and KerasHub can be installed with:
```
pip install -U -q keras-Hub
pip install -U -q keras>=3
```
Jax, TensorFlow, and Torch come preinstalled in Kaggle Notebooks. For instructions on installing them in another environment see the [Keras Getting Started](https://keras.io/getting_started/) page.
## Presets
The following model checkpoints are provided by the Keras team. Weights have been ported from https://dl.fbaipublicfiles.com/segment_anything/. Full code examples for each are available below.
Here's the table formatted similarly to the given pattern:
Here's the updated table with the input resolutions included in the descriptions:
| Preset name | Parameters | Description |
|--------------------------|------------|--------------------------------------------------------------------------------------------------|
| mit_b0_ade20k_512 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. |
| mit_b1_ade20k_512 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. |
| mit_b2_ade20k_512 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. |
| mit_b3_ade20k_512 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. |
| mit_b4_ade20k_512 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks, trained on the ADE20K dataset with an input resolution of 512x512 pixels. |
| mit_b5_ade20k_640 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks, trained on the ADE20K dataset with an input resolution of 640x640 pixels. |
| mit_b0_cityscapes_1024 | 3.32M | MiT (MixTransformer) model with 8 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
| mit_b1_cityscapes_1024 | 13.16M | MiT (MixTransformer) model with 8 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
| mit_b2_cityscapes_1024 | 24.20M | MiT (MixTransformer) model with 16 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
| mit_b3_cityscapes_1024 | 44.08M | MiT (MixTransformer) model with 28 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
| mit_b4_cityscapes_1024 | 60.85M | MiT (MixTransformer) model with 41 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
| mit_b5_cityscapes_1024 | 81.45M | MiT (MixTransformer) model with 52 transformer blocks, trained on the Cityscapes dataset with an input resolution of 1024x1024 pixels. |
## Example Usage
Using the class with a `backbone`:
```
import tensorflow as tf
import keras_cv
import numpy as np
images = np.ones(shape=(1, 96, 96, 3))
labels = np.zeros(shape=(1, 96, 96, 1))
backbone = keras_cv.models.MiTBackbone.from_preset("mit_b1_cityscapes_1024")
# Evaluate model
model(images)
# Train model
model.compile(
optimizer="adam",
loss=keras.losses.BinaryCrossentropy(from_logits=False),
metrics=["accuracy"],
)
model.fit(images, labels, epochs=3)
```
## Example Usage with Hugging Face URI
Using the class with a `backbone`:
```
import tensorflow as tf
import keras_cv
import numpy as np
images = np.ones(shape=(1, 96, 96, 3))
labels = np.zeros(shape=(1, 96, 96, 1))
backbone = keras_cv.models.MiTBackbone.from_preset("hf://keras/mit_b1_cityscapes_1024")
# Evaluate model
model(images)
# Train model
model.compile(
optimizer="adam",
loss=keras.losses.BinaryCrossentropy(from_logits=False),
metrics=["accuracy"],
)
model.fit(images, labels, epochs=3)
```
|