Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.37 +/- 0.36
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:328a92d409c4502a5595bc3ce2a5c0b9182b09b3cde434b8b37931bb2d704502
|
3 |
+
size 109580
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -41,24 +43,24 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
-
"learning_rate": 0.
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
53 |
":type:": "<class 'function'>",
|
54 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,29 +68,29 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[-0.
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
75 |
-
"use_sde":
|
76 |
"sde_sample_freq": -1,
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
-
"n_steps":
|
88 |
"gamma": 0.99,
|
89 |
-
"gae_lambda":
|
90 |
"ent_coef": 0.0,
|
91 |
-
"vf_coef": 0.
|
92 |
"max_grad_norm": 0.5,
|
93 |
"normalize_advantage": false
|
94 |
}
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcb7c41d9d0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fcb7c423120>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 4,
|
46 |
+
"num_timesteps": 2500000,
|
47 |
+
"_total_timesteps": 2500000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1674026139866792743,
|
52 |
+
"learning_rate": 0.00096,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'collections.OrderedDict'>",
|
60 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcLdFP5voc79hUn6/Eee8v89kLD8lgoQ/5W7hPsGh/z5hPKo/Qo+xvyX9Gz+iFHK8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
61 |
+
"achieved_goal": "[[0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]]",
|
62 |
+
"desired_goal": "[[ 0.7723303 -0.952768 -0.9934445 ]\n [-1.4758016 0.6734132 1.0352217 ]\n [ 0.44029918 0.49928096 1.3299676 ]\n [-1.3871844 0.6093314 -0.01477543]]",
|
63 |
+
"observation": "[[4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]]"
|
64 |
},
|
65 |
"_last_episode_starts": {
|
66 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
68 |
},
|
69 |
"_last_original_obs": {
|
70 |
":type:": "<class 'collections.OrderedDict'>",
|
71 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzdarvFTHmr3zrZI+GfODPSvaorwhV2U+uiaRvT8eDb6nDVI+J+EQvrpltD3tdT09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
72 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
73 |
+
"desired_goal": "[[-0.02097645 -0.0755755 0.28648338]\n [ 0.06442852 -0.01987942 0.22396518]\n [-0.07087465 -0.13781069 0.2051302 ]\n [-0.14148389 0.08808465 0.04625504]]",
|
74 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
75 |
},
|
76 |
"_episode_num": 0,
|
77 |
+
"use_sde": true,
|
78 |
"sde_sample_freq": -1,
|
79 |
"_current_progress_remaining": 0.0,
|
80 |
"ep_info_buffer": {
|
81 |
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFHr9SXxu7b+UhpRSlIwBbJRLMowBdJRHQLp1heokzGh1fZQoaAZoCWgPQwgxfERMiaTrv5SGlFKUaBVLMmgWR0C6dWdE5QxfdX2UKGgGaAloD0MIG7luSnkt7L+UhpRSlGgVSzJoFkdAunVJVCHARHV9lChoBmgJaA9DCEP/BBcrKvK/lIaUUpRoFUsyaBZHQLp1KNzKcNJ1fZQoaAZoCWgPQwgDXJAty9fwv5SGlFKUaBVLMmgWR0C6dgjbFjusdX2UKGgGaAloD0MIcyzvqgfM7b+UhpRSlGgVSzJoFkdAunXpzhgmZ3V9lChoBmgJaA9DCLZLGw5Lg/e/lIaUUpRoFUsyaBZHQLp1y/PgNw11fZQoaAZoCWgPQwiA1CZO7nfpv5SGlFKUaBVLMmgWR0C6dasZHd43dX2UKGgGaAloD0MIERssnKQ58b+UhpRSlGgVSzJoFkdAunaJCUornXV9lChoBmgJaA9DCKZDp+fdWOe/lIaUUpRoFUsyaBZHQLp2aeZ5Rj11fZQoaAZoCWgPQwhVvmckQiPav5SGlFKUaBVLMmgWR0C6dkvt6X0HdX2UKGgGaAloD0MI3NRA8zl347+UhpRSlGgVSzJoFkdAunYrJRwZO3V9lChoBmgJaA9DCNCX3v5cNOW/lIaUUpRoFUsyaBZHQLp3CaYu01J1fZQoaAZoCWgPQwji6gCIu3rsv5SGlFKUaBVLMmgWR0C6duqEi+tbdX2UKGgGaAloD0MIcXZrmQwH+b+UhpRSlGgVSzJoFkdAunbMuBczInV9lChoBmgJaA9DCObnhqbs9OO/lIaUUpRoFUsyaBZHQLp2q+8oQWh1fZQoaAZoCWgPQwi0AG2rWeflv5SGlFKUaBVLMmgWR0C6d4wWzniedX2UKGgGaAloD0MIFMstrYbE2b+UhpRSlGgVSzJoFkdAunds6dUbUHV9lChoBmgJaA9DCAvw3eaNk+G/lIaUUpRoFUsyaBZHQLp3TvYvnKZ1fZQoaAZoCWgPQwi0keumlNfxv5SGlFKUaBVLMmgWR0C6dy4iC8ODdX2UKGgGaAloD0MIOlyrPeyF4b+UhpRSlGgVSzJoFkdAungvVwxWUHV9lChoBmgJaA9DCGdg5GVNrOW/lIaUUpRoFUsyaBZHQLp4EE4//vR1fZQoaAZoCWgPQwhIh4cwfprmv5SGlFKUaBVLMmgWR0C6d/JjpcHGdX2UKGgGaAloD0MI5j+k376O67+UhpRSlGgVSzJoFkdAunfR77bcoHV9lChoBmgJaA9DCPZ5jPLMy9K/lIaUUpRoFUsyaBZHQLp4sUG3WnV1fZQoaAZoCWgPQwhD/plBfGDNv5SGlFKUaBVLMmgWR0C6eJI02tMgdX2UKGgGaAloD0MIuoYZGk+E77+UhpRSlGgVSzJoFkdAunh0YKpkw3V9lChoBmgJaA9DCG7fo/56BeG/lIaUUpRoFUsyaBZHQLp4U4wRGtp1fZQoaAZoCWgPQwjCilOthVnXv5SGlFKUaBVLMmgWR0C6eTekP+XJdX2UKGgGaAloD0MIIv5hS48m5r+UhpRSlGgVSzJoFkdAunkYpz90inV9lChoBmgJaA9DCL7BFyZTBfK/lIaUUpRoFUsyaBZHQLp4+uQp4KR1fZQoaAZoCWgPQwjaHOc24V7Lv5SGlFKUaBVLMmgWR0C6eNoFRpDedX2UKGgGaAloD0MI8S2sG++O87+UhpRSlGgVSzJoFkdAunnAKc/dI3V9lChoBmgJaA9DCKH0hZDzfuK/lIaUUpRoFUsyaBZHQLp5oP1+RYB1fZQoaAZoCWgPQwjTE5Z4QNnov5SGlFKUaBVLMmgWR0C6eYMhPj4pdX2UKGgGaAloD0MIflUuVP615L+UhpRSlGgVSzJoFkdAunlioOx0MnV9lChoBmgJaA9DCMpUwaikTuG/lIaUUpRoFUsyaBZHQLp6PyOaOPx1fZQoaAZoCWgPQwgc7bjhd1Pxv5SGlFKUaBVLMmgWR0C6eiAVTJhfdX2UKGgGaAloD0MIXvHUIw1u1L+UhpRSlGgVSzJoFkdAunoCOBDohnV9lChoBmgJaA9DCBsrMc9KWtm/lIaUUpRoFUsyaBZHQLp54WhAWzp1fZQoaAZoCWgPQwhmn8coz7zmv5SGlFKUaBVLMmgWR0C6esW/SH/MdX2UKGgGaAloD0MIxyx7Etic37+UhpRSlGgVSzJoFkdAunqmr4nF53V9lChoBmgJaA9DCMzuycNCreG/lIaUUpRoFUsyaBZHQLp6iNlAeJZ1fZQoaAZoCWgPQwgVj4tqEVHYv5SGlFKUaBVLMmgWR0C6emgMhHLBdX2UKGgGaAloD0MIilWDMLc797+UhpRSlGgVSzJoFkdAuntCEGqxT3V9lChoBmgJaA9DCJdyvth78d2/lIaUUpRoFUsyaBZHQLp7Ivc8DCB1fZQoaAZoCWgPQwjYfcfw2E/gv5SGlFKUaBVLMmgWR0C6ewUoWpIddX2UKGgGaAloD0MIgEdUqG4u5L+UhpRSlGgVSzJoFkdAunrkXhwVCXV9lChoBmgJaA9DCHnL1Y9N8uS/lIaUUpRoFUsyaBZHQLp7xsZYPoV1fZQoaAZoCWgPQwiN0TqqmmDzv5SGlFKUaBVLMmgWR0C6e6e+mFajdX2UKGgGaAloD0MIj1a1pKPc8r+UhpRSlGgVSzJoFkdAunuJ5nlGPXV9lChoBmgJaA9DCHJsPUM4Ztu/lIaUUpRoFUsyaBZHQLp7aWgvlEJ1fZQoaAZoCWgPQwi3Jt2WyIXpv5SGlFKUaBVLMmgWR0C6fEmqgh8qdX2UKGgGaAloD0MIq5Se6SUG8L+UhpRSlGgVSzJoFkdAunwqp4rz5HV9lChoBmgJaA9DCI0ngjgPp+6/lIaUUpRoFUsyaBZHQLp8DND+irV1fZQoaAZoCWgPQwiA7zZvnBTxv5SGlFKUaBVLMmgWR0C6e+wTM7lrdX2UKGgGaAloD0MIUInrGFdc6L+UhpRSlGgVSzJoFkdAunzQbp/wzHV9lChoBmgJaA9DCEHTEiujkd6/lIaUUpRoFUsyaBZHQLp8sXf642F1fZQoaAZoCWgPQwg+k/3zNGDqv5SGlFKUaBVLMmgWR0C6fJO6iCardX2UKGgGaAloD0MI14UfnE+d8L+UhpRSlGgVSzJoFkdAunxzDHfdh3V9lChoBmgJaA9DCPdzCvKzEfC/lIaUUpRoFUsyaBZHQLp9ZaqjrRl1fZQoaAZoCWgPQwj5ZwbxgZ3lv5SGlFKUaBVLMmgWR0C6fUad+XqrdX2UKGgGaAloD0MIryZPWU3X2L+UhpRSlGgVSzJoFkdAun0orJ8v3HV9lChoBmgJaA9DCA6g3/dv3vK/lIaUUpRoFUsyaBZHQLp9B9pyp711fZQoaAZoCWgPQwgGaFvNOmPsv5SGlFKUaBVLMmgWR0C6feZgkTpQdX2UKGgGaAloD0MIxQJf0a3X5L+UhpRSlGgVSzJoFkdAun3HO2RaHXV9lChoBmgJaA9DCLiQR3Aj5eq/lIaUUpRoFUsyaBZHQLp9qVIqbz91fZQoaAZoCWgPQwjL94xEaIThv5SGlFKUaBVLMmgWR0C6fYh8+iaidX2UKGgGaAloD0MIiEojZvb54L+UhpRSlGgVSzJoFkdAun5jz9S/CnV9lChoBmgJaA9DCMv49xkXjuu/lIaUUpRoFUsyaBZHQLp+RNliBoV1fZQoaAZoCWgPQwjVXkTbMfXkv5SGlFKUaBVLMmgWR0C6ficKohpydX2UKGgGaAloD0MIud42UyGe5b+UhpRSlGgVSzJoFkdAun4GKXOW0XV9lChoBmgJaA9DCOmbNA2K5uW/lIaUUpRoFUsyaBZHQLp+8ofCAMF1fZQoaAZoCWgPQwiRtvEnKpvzv5SGlFKUaBVLMmgWR0C6ftN5t3wDdX2UKGgGaAloD0MIR8hAnl2+5b+UhpRSlGgVSzJoFkdAun61oJzDGnV9lChoBmgJaA9DCDnQQ20bRu2/lIaUUpRoFUsyaBZHQLp+lPZZjhF1fZQoaAZoCWgPQwh0C12JQPXzv5SGlFKUaBVLMmgWR0C6f39y925hdX2UKGgGaAloD0MIBhGpaReT8r+UhpRSlGgVSzJoFkdAun9gq2Bre3V9lChoBmgJaA9DCPUQje4gduW/lIaUUpRoFUsyaBZHQLp/QwOOKfp1fZQoaAZoCWgPQwgr9pfdk4fiv5SGlFKUaBVLMmgWR0C6fyKePJaJdX2UKGgGaAloD0MIKdAn8iTp9L+UhpRSlGgVSzJoFkdAuoADMNc4YXV9lChoBmgJaA9DCKcGms+5m/C/lIaUUpRoFUsyaBZHQLp/5DgZTAF1fZQoaAZoCWgPQwhMpDSbx2Hvv5SGlFKUaBVLMmgWR0C6f8ZiuuA7dX2UKGgGaAloD0MIiGTIsfWM9b+UhpRSlGgVSzJoFkdAun+lpwjt5XV9lChoBmgJaA9DCAqEnWLV4PC/lIaUUpRoFUsyaBZHQLqAjLrX18N1fZQoaAZoCWgPQwhpGan3VI70v5SGlFKUaBVLMmgWR0C6gG26ClJpdX2UKGgGaAloD0MIflaZKa2/8b+UhpRSlGgVSzJoFkdAuoBP7l7tzHV9lChoBmgJaA9DCKSOjquR3em/lIaUUpRoFUsyaBZHQLqALy08eS11fZQoaAZoCWgPQwhqhlRRvArzv5SGlFKUaBVLMmgWR0C6gQzXFtKqdX2UKGgGaAloD0MIkgThCijU8r+UhpRSlGgVSzJoFkdAuoDtvfj0c3V9lChoBmgJaA9DCGYv205bY/y/lIaUUpRoFUsyaBZHQLqAz8+A3DN1fZQoaAZoCWgPQwhqhlRRvIr+v5SGlFKUaBVLMmgWR0C6gK7dWQwLdX2UKGgGaAloD0MIttjts8oM9L+UhpRSlGgVSzJoFkdAuoGG2UjcEnV9lChoBmgJaA9DCLmmQGZnkfe/lIaUUpRoFUsyaBZHQLqBaDyOJch1fZQoaAZoCWgPQwiUhETaxl/wv5SGlFKUaBVLMmgWR0C6gUqbWmP6dX2UKGgGaAloD0MIYcYUrHG28b+UhpRSlGgVSzJoFkdAuoEpzhgmZ3V9lChoBmgJaA9DCB3k9WBSfPC/lIaUUpRoFUsyaBZHQLqCEDTjNpx1fZQoaAZoCWgPQwg/qmG/J1b6v5SGlFKUaBVLMmgWR0C6gfEtdzGQdX2UKGgGaAloD0MIOQmlL4Sc87+UhpRSlGgVSzJoFkdAuoHTPOY6XHV9lChoBmgJaA9DCJ86Vik9U+q/lIaUUpRoFUsyaBZHQLqBsnH/9511ZS4="
|
83 |
},
|
84 |
"ep_success_buffer": {
|
85 |
":type:": "<class 'collections.deque'>",
|
86 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
},
|
88 |
+
"_n_updates": 78125,
|
89 |
+
"n_steps": 8,
|
90 |
"gamma": 0.99,
|
91 |
+
"gae_lambda": 0.9,
|
92 |
"ent_coef": 0.0,
|
93 |
+
"vf_coef": 0.4,
|
94 |
"max_grad_norm": 0.5,
|
95 |
"normalize_advantage": false
|
96 |
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f09a9fbd0437bf17559d0bf7a9937bd7485ccb80eee3736c55155d19de0bd9b9
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bde74417df85bfa7b245506631e48f6f7029d3a170b9e8eac9a7d60db9920d6
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7eff28c71700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7eff28c6d4e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674014882274703156, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAFU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/FU3SPm3BBD0hxRk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7pjEv0eKOb+9S8a+I5vjPUaxjr8eEcC9cW50Pj88A789auO9UVvgPuu/Yj5ZCEY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDwVTdI+bcEEPSHFGT+a0xI8GhgjO2PRjDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]\n [0.41074434 0.03241103 0.6006642 ]]", "desired_goal": "[[-1.535917 -0.7247662 -0.3872966 ]\n [ 0.11113574 -1.114785 -0.09378265]\n [ 0.23870255 -0.51263803 -0.11104248]\n [ 0.4381967 0.22143523 0.7735649 ]]", "observation": "[[0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]\n [0.41074434 0.03241103 0.6006642 0.00896158 0.00248862 0.01718969]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANY7nvEjbpr3i9gY+BtGyvHRqTb3yypE+X7KcPZTZz70kPcg9h0EEvqtwlL18rlI9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02826605 -0.08147293 0.13180116]\n [-0.02182819 -0.05015035 0.28475147]\n [ 0.07651209 -0.10148922 0.09777287]\n [-0.12915622 -0.07248052 0.05143593]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI46jcRC0N/b+UhpRSlIwBbJRLMowBdJRHQKRmfB0p3HJ1fZQoaAZoCWgPQwiy9KEL6psMwJSGlFKUaBVLMmgWR0CkZkFn7HhkdX2UKGgGaAloD0MI5C7CFOUyB8CUhpRSlGgVSzJoFkdApGYEIu5BknV9lChoBmgJaA9DCCC29GiqZxHAlIaUUpRoFUsyaBZHQKRlyXt0FKV1fZQoaAZoCWgPQwithsQ9lh4UwJSGlFKUaBVLMmgWR0CkZ3402tMgdX2UKGgGaAloD0MIzcth9x2DA8CUhpRSlGgVSzJoFkdApGdCVII4VHV9lChoBmgJaA9DCOBoxw2/WwbAlIaUUpRoFUsyaBZHQKRnBXAdn011fZQoaAZoCWgPQwjt0obD0sD7v5SGlFKUaBVLMmgWR0CkZsqveP7vdX2UKGgGaAloD0MIb9i2KLORFcCUhpRSlGgVSzJoFkdApGhejqOcUnV9lChoBmgJaA9DCCo6kst/KADAlIaUUpRoFUsyaBZHQKRoIqNIbwV1fZQoaAZoCWgPQwjHSPYINaMTwJSGlFKUaBVLMmgWR0CkZ+WicoYvdX2UKGgGaAloD0MIG2X9ZmI6EcCUhpRSlGgVSzJoFkdApGeq/TLGJnV9lChoBmgJaA9DCL4tWKoLGBrAlIaUUpRoFUsyaBZHQKRpPF+/gzh1fZQoaAZoCWgPQwi/C1uzlfcEwJSGlFKUaBVLMmgWR0CkaQBzNliCdX2UKGgGaAloD0MI5Nwm3Cvz9r+UhpRSlGgVSzJoFkdApGjDE74i5nV9lChoBmgJaA9DCEQzT64p0A7AlIaUUpRoFUsyaBZHQKRoiJO32El1fZQoaAZoCWgPQwjTo6mezH/2v5SGlFKUaBVLMmgWR0CkahPRRdhRdX2UKGgGaAloD0MI9SoyOiBpCsCUhpRSlGgVSzJoFkdApGnYbdadMHV9lChoBmgJaA9DCLXC9L2GQBvAlIaUUpRoFUsyaBZHQKRpm4x1xKh1fZQoaAZoCWgPQwjohTsXRhoCwJSGlFKUaBVLMmgWR0CkaWEXk5p8dX2UKGgGaAloD0MIVTNrKSB9GcCUhpRSlGgVSzJoFkdApGsHkWAPNHV9lChoBmgJaA9DCIy+gjRjEQvAlIaUUpRoFUsyaBZHQKRqy6QNkOJ1fZQoaAZoCWgPQwgZHCWvzuEQwJSGlFKUaBVLMmgWR0Ckao6CUX54dX2UKGgGaAloD0MI9aCgFK3MF8CUhpRSlGgVSzJoFkdApGpT1uivgXV9lChoBmgJaA9DCMfZdARwM/q/lIaUUpRoFUsyaBZHQKRr9qO938p1fZQoaAZoCWgPQwikjLgANKoFwJSGlFKUaBVLMmgWR0Cka7q2a2F4dX2UKGgGaAloD0MIB7MJMCz/CsCUhpRSlGgVSzJoFkdApGt9pblijXV9lChoBmgJaA9DCNCZtKm6BwjAlIaUUpRoFUsyaBZHQKRrQza9K291fZQoaAZoCWgPQwjwbI/ecN8RwJSGlFKUaBVLMmgWR0CkbN5TAFgVdX2UKGgGaAloD0MIveXqxyZZGsCUhpRSlGgVSzJoFkdApGyieRPoFHV9lChoBmgJaA9DCNP3GoLjMgLAlIaUUpRoFUsyaBZHQKRsZUQ04zd1fZQoaAZoCWgPQwgHtd/aiRIQwJSGlFKUaBVLMmgWR0CkbCrCFbmmdX2UKGgGaAloD0MIchdhinIpC8CUhpRSlGgVSzJoFkdApG3B/d69kHV9lChoBmgJaA9DCC4dc56xzwLAlIaUUpRoFUsyaBZHQKRthj1f3N91fZQoaAZoCWgPQwjh8e1dg/4AwJSGlFKUaBVLMmgWR0CkbUjsdDIBdX2UKGgGaAloD0MIY9UgzO3eEsCUhpRSlGgVSzJoFkdApG0ON3np0XV9lChoBmgJaA9DCE65wrtc5BfAlIaUUpRoFUsyaBZHQKRun6LwWnF1fZQoaAZoCWgPQwjYf52bNuMDwJSGlFKUaBVLMmgWR0CkbmQGnn+ydX2UKGgGaAloD0MIUwlP6PVnCcCUhpRSlGgVSzJoFkdApG4moNutOnV9lChoBmgJaA9DCCcuxysQnQrAlIaUUpRoFUsyaBZHQKRt6/X5FgF1fZQoaAZoCWgPQwjCoiJOJ3kdwJSGlFKUaBVLMmgWR0Ckb5+9i+cpdX2UKGgGaAloD0MIfJkoQuqmEsCUhpRSlGgVSzJoFkdApG9kiMYMv3V9lChoBmgJaA9DCDyHMlTFBBTAlIaUUpRoFUsyaBZHQKRvJ0ihWYF1fZQoaAZoCWgPQwjXaDnQQ+0JwJSGlFKUaBVLMmgWR0CkbuyCnP3SdX2UKGgGaAloD0MIMbJkjuW9AsCUhpRSlGgVSzJoFkdApHB00YTCcnV9lChoBmgJaA9DCMb5m1CIYBDAlIaUUpRoFUsyaBZHQKRwOOqebut1fZQoaAZoCWgPQwiQ3QVKCmwEwJSGlFKUaBVLMmgWR0Ckb/uNYKYzdX2UKGgGaAloD0MIVRLZB1n2DcCUhpRSlGgVSzJoFkdApG/A4CIUJ3V9lChoBmgJaA9DCCiAYmTJHADAlIaUUpRoFUsyaBZHQKRxXrBTGYN1fZQoaAZoCWgPQwindRvUfmsTwJSGlFKUaBVLMmgWR0CkcSLBj4HpdX2UKGgGaAloD0MIkfKTap9+E8CUhpRSlGgVSzJoFkdApHDlaIN3GHV9lChoBmgJaA9DCD8AqU2cHA3AlIaUUpRoFUsyaBZHQKRwqqlP8AJ1fZQoaAZoCWgPQwivfQG9cCcNwJSGlFKUaBVLMmgWR0CkcjQRoRI0dX2UKGgGaAloD0MIpnud1JeFAcCUhpRSlGgVSzJoFkdApHH4F/x2CHV9lChoBmgJaA9DCNzZVx6kBxXAlIaUUpRoFUsyaBZHQKRxurbxmTV1fZQoaAZoCWgPQwjBjClY40wBwJSGlFKUaBVLMmgWR0CkcX/nOjZddX2UKGgGaAloD0MIFTyFXKm3FcCUhpRSlGgVSzJoFkdApHMMZUDMeXV9lChoBmgJaA9DCHR8tDhjmBjAlIaUUpRoFUsyaBZHQKRy0G9pRGd1fZQoaAZoCWgPQwiXjjnP2JcBwJSGlFKUaBVLMmgWR0CkcpMo2GZedX2UKGgGaAloD0MIkSdJ10z+D8CUhpRSlGgVSzJoFkdApHJYaxX4kHV9lChoBmgJaA9DCEaZDTLJOBHAlIaUUpRoFUsyaBZHQKRz6+rU9ZB1fZQoaAZoCWgPQwhqpnud1BcMwJSGlFKUaBVLMmgWR0Ckc6/3evZAdX2UKGgGaAloD0MIKsk6HF21GsCUhpRSlGgVSzJoFkdApHNy2WpqAXV9lChoBmgJaA9DCIC4q1eREfy/lIaUUpRoFUsyaBZHQKRzOBwuM/B1fZQoaAZoCWgPQwiSIjKs4r0awJSGlFKUaBVLMmgWR0CkdMtVR1oydX2UKGgGaAloD0MIY5y/CYVoD8CUhpRSlGgVSzJoFkdApHSPWOIZZXV9lChoBmgJaA9DCHhgAOFDiQbAlIaUUpRoFUsyaBZHQKR0UfeUILR1fZQoaAZoCWgPQwhwJNBgUycKwJSGlFKUaBVLMmgWR0CkdBdmQKa5dX2UKGgGaAloD0MIMgBUceMWDcCUhpRSlGgVSzJoFkdApHXKS9ugpXV9lChoBmgJaA9DCCPXTSmvFQjAlIaUUpRoFUsyaBZHQKR1jk+5e7d1fZQoaAZoCWgPQwh1OpD11AoawJSGlFKUaBVLMmgWR0CkdVD15B1LdX2UKGgGaAloD0MIdJgvL8CeB8CUhpRSlGgVSzJoFkdApHUWJWNm2HV9lChoBmgJaA9DCOFDiZY8HgHAlIaUUpRoFUsyaBZHQKR2rxrBTGZ1fZQoaAZoCWgPQwgew2M/i6UIwJSGlFKUaBVLMmgWR0CkdnNOVPepdX2UKGgGaAloD0MIGysxz0rqEcCUhpRSlGgVSzJoFkdApHY2KKpDNXV9lChoBmgJaA9DCD5bBwd7sxLAlIaUUpRoFUsyaBZHQKR1+2MKkVN1fZQoaAZoCWgPQwgg66nVV7cNwJSGlFKUaBVLMmgWR0Ckd4pEYwZgdX2UKGgGaAloD0MI/U0oRMCBCcCUhpRSlGgVSzJoFkdApHdOW+oLonV9lChoBmgJaA9DCDTW/s726AjAlIaUUpRoFUsyaBZHQKR3EWYWtU51fZQoaAZoCWgPQwhE2zF1VyYTwJSGlFKUaBVLMmgWR0CkdtauGKyfdX2UKGgGaAloD0MIuhCrP8IwFcCUhpRSlGgVSzJoFkdApHh94u9OAXV9lChoBmgJaA9DCHnKarqe6A7AlIaUUpRoFUsyaBZHQKR4Qe+23KB1fZQoaAZoCWgPQwg49BYP71kXwJSGlFKUaBVLMmgWR0CkeASP+4smdX2UKGgGaAloD0MItRoS91h6FcCUhpRSlGgVSzJoFkdApHfJzNliB3V9lChoBmgJaA9DCClauReYlQbAlIaUUpRoFUsyaBZHQKR5W5WilBR1fZQoaAZoCWgPQwjNeFvptUkQwJSGlFKUaBVLMmgWR0CkeR/eLvTgdX2UKGgGaAloD0MIqyFxj6XPAsCUhpRSlGgVSzJoFkdApHjioKlYU3V9lChoBmgJaA9DCGeY2lIH6RLAlIaUUpRoFUsyaBZHQKR4qC7K7qZ1fZQoaAZoCWgPQwiSzVXzHCETwJSGlFKUaBVLMmgWR0CkekGhEjPfdX2UKGgGaAloD0MIMxgjEoW2BcCUhpRSlGgVSzJoFkdApHoFu1ndwnV9lChoBmgJaA9DCA6ki00rJQ3AlIaUUpRoFUsyaBZHQKR5yGucME11fZQoaAZoCWgPQwi1w1+TNWoEwJSGlFKUaBVLMmgWR0CkeY3H7xd6dX2UKGgGaAloD0MI7rWg98bgGsCUhpRSlGgVSzJoFkdApHsjXcxj8XV9lChoBmgJaA9DCJ8AipElMw3AlIaUUpRoFUsyaBZHQKR652aDwph1fZQoaAZoCWgPQwiNRdPZyXAVwJSGlFKUaBVLMmgWR0CkeqoT4+KTdX2UKGgGaAloD0MIwZFAg00tEsCUhpRSlGgVSzJoFkdApHpvWe6I33V9lChoBmgJaA9DCAIqHEEqpQHAlIaUUpRoFUsyaBZHQKR8CbSZ0CB1fZQoaAZoCWgPQwjxSScSTLUMwJSGlFKUaBVLMmgWR0Cke82+oLofdX2UKGgGaAloD0MI/reSHRuRFcCUhpRSlGgVSzJoFkdApHuQyIpH7XV9lChoBmgJaA9DCMR4zas6CwHAlIaUUpRoFUsyaBZHQKR7Vltj0+V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fcb7c41d9d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb7c423120>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2500000, "_total_timesteps": 2500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674026139866792743, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAR7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/R7vVPi1Pnzvqxwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcLdFP5voc79hUn6/Eee8v89kLD8lgoQ/5W7hPsGh/z5hPKo/Qo+xvyX9Gz+iFHK8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABHu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT1Hu9U+LU+fO+rHCT/7qbA9KO2rOIAgiT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]\n [0.41744444 0.00486173 0.5382067 ]]", "desired_goal": "[[ 0.7723303 -0.952768 -0.9934445 ]\n [-1.4758016 0.6734132 1.0352217 ]\n [ 0.44029918 0.49928096 1.3299676 ]\n [-1.3871844 0.6093314 -0.01477543]]", "observation": "[[4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]\n [4.1744444e-01 4.8617334e-03 5.3820670e-01 8.6261712e-02 8.1980892e-05\n 6.6956520e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzdarvFTHmr3zrZI+GfODPSvaorwhV2U+uiaRvT8eDb6nDVI+J+EQvrpltD3tdT09lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02097645 -0.0755755 0.28648338]\n [ 0.06442852 -0.01987942 0.22396518]\n [-0.07087465 -0.13781069 0.2051302 ]\n [-0.14148389 0.08808465 0.04625504]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFHr9SXxu7b+UhpRSlIwBbJRLMowBdJRHQLp1heokzGh1fZQoaAZoCWgPQwgxfERMiaTrv5SGlFKUaBVLMmgWR0C6dWdE5QxfdX2UKGgGaAloD0MIG7luSnkt7L+UhpRSlGgVSzJoFkdAunVJVCHARHV9lChoBmgJaA9DCEP/BBcrKvK/lIaUUpRoFUsyaBZHQLp1KNzKcNJ1fZQoaAZoCWgPQwgDXJAty9fwv5SGlFKUaBVLMmgWR0C6dgjbFjusdX2UKGgGaAloD0MIcyzvqgfM7b+UhpRSlGgVSzJoFkdAunXpzhgmZ3V9lChoBmgJaA9DCLZLGw5Lg/e/lIaUUpRoFUsyaBZHQLp1y/PgNw11fZQoaAZoCWgPQwiA1CZO7nfpv5SGlFKUaBVLMmgWR0C6dasZHd43dX2UKGgGaAloD0MIERssnKQ58b+UhpRSlGgVSzJoFkdAunaJCUornXV9lChoBmgJaA9DCKZDp+fdWOe/lIaUUpRoFUsyaBZHQLp2aeZ5Rj11fZQoaAZoCWgPQwhVvmckQiPav5SGlFKUaBVLMmgWR0C6dkvt6X0HdX2UKGgGaAloD0MI3NRA8zl347+UhpRSlGgVSzJoFkdAunYrJRwZO3V9lChoBmgJaA9DCNCX3v5cNOW/lIaUUpRoFUsyaBZHQLp3CaYu01J1fZQoaAZoCWgPQwji6gCIu3rsv5SGlFKUaBVLMmgWR0C6duqEi+tbdX2UKGgGaAloD0MIcXZrmQwH+b+UhpRSlGgVSzJoFkdAunbMuBczInV9lChoBmgJaA9DCObnhqbs9OO/lIaUUpRoFUsyaBZHQLp2q+8oQWh1fZQoaAZoCWgPQwi0AG2rWeflv5SGlFKUaBVLMmgWR0C6d4wWzniedX2UKGgGaAloD0MIFMstrYbE2b+UhpRSlGgVSzJoFkdAunds6dUbUHV9lChoBmgJaA9DCAvw3eaNk+G/lIaUUpRoFUsyaBZHQLp3TvYvnKZ1fZQoaAZoCWgPQwi0keumlNfxv5SGlFKUaBVLMmgWR0C6dy4iC8ODdX2UKGgGaAloD0MIOlyrPeyF4b+UhpRSlGgVSzJoFkdAungvVwxWUHV9lChoBmgJaA9DCGdg5GVNrOW/lIaUUpRoFUsyaBZHQLp4EE4//vR1fZQoaAZoCWgPQwhIh4cwfprmv5SGlFKUaBVLMmgWR0C6d/JjpcHGdX2UKGgGaAloD0MI5j+k376O67+UhpRSlGgVSzJoFkdAunfR77bcoHV9lChoBmgJaA9DCPZ5jPLMy9K/lIaUUpRoFUsyaBZHQLp4sUG3WnV1fZQoaAZoCWgPQwhD/plBfGDNv5SGlFKUaBVLMmgWR0C6eJI02tMgdX2UKGgGaAloD0MIuoYZGk+E77+UhpRSlGgVSzJoFkdAunh0YKpkw3V9lChoBmgJaA9DCG7fo/56BeG/lIaUUpRoFUsyaBZHQLp4U4wRGtp1fZQoaAZoCWgPQwjCilOthVnXv5SGlFKUaBVLMmgWR0C6eTekP+XJdX2UKGgGaAloD0MIIv5hS48m5r+UhpRSlGgVSzJoFkdAunkYpz90inV9lChoBmgJaA9DCL7BFyZTBfK/lIaUUpRoFUsyaBZHQLp4+uQp4KR1fZQoaAZoCWgPQwjaHOc24V7Lv5SGlFKUaBVLMmgWR0C6eNoFRpDedX2UKGgGaAloD0MI8S2sG++O87+UhpRSlGgVSzJoFkdAunnAKc/dI3V9lChoBmgJaA9DCKH0hZDzfuK/lIaUUpRoFUsyaBZHQLp5oP1+RYB1fZQoaAZoCWgPQwjTE5Z4QNnov5SGlFKUaBVLMmgWR0C6eYMhPj4pdX2UKGgGaAloD0MIflUuVP615L+UhpRSlGgVSzJoFkdAunlioOx0MnV9lChoBmgJaA9DCMpUwaikTuG/lIaUUpRoFUsyaBZHQLp6PyOaOPx1fZQoaAZoCWgPQwgc7bjhd1Pxv5SGlFKUaBVLMmgWR0C6eiAVTJhfdX2UKGgGaAloD0MIXvHUIw1u1L+UhpRSlGgVSzJoFkdAunoCOBDohnV9lChoBmgJaA9DCBsrMc9KWtm/lIaUUpRoFUsyaBZHQLp54WhAWzp1fZQoaAZoCWgPQwhmn8coz7zmv5SGlFKUaBVLMmgWR0C6esW/SH/MdX2UKGgGaAloD0MIxyx7Etic37+UhpRSlGgVSzJoFkdAunqmr4nF53V9lChoBmgJaA9DCMzuycNCreG/lIaUUpRoFUsyaBZHQLp6iNlAeJZ1fZQoaAZoCWgPQwgVj4tqEVHYv5SGlFKUaBVLMmgWR0C6emgMhHLBdX2UKGgGaAloD0MIilWDMLc797+UhpRSlGgVSzJoFkdAuntCEGqxT3V9lChoBmgJaA9DCJdyvth78d2/lIaUUpRoFUsyaBZHQLp7Ivc8DCB1fZQoaAZoCWgPQwjYfcfw2E/gv5SGlFKUaBVLMmgWR0C6ewUoWpIddX2UKGgGaAloD0MIgEdUqG4u5L+UhpRSlGgVSzJoFkdAunrkXhwVCXV9lChoBmgJaA9DCHnL1Y9N8uS/lIaUUpRoFUsyaBZHQLp7xsZYPoV1fZQoaAZoCWgPQwiN0TqqmmDzv5SGlFKUaBVLMmgWR0C6e6e+mFajdX2UKGgGaAloD0MIj1a1pKPc8r+UhpRSlGgVSzJoFkdAunuJ5nlGPXV9lChoBmgJaA9DCHJsPUM4Ztu/lIaUUpRoFUsyaBZHQLp7aWgvlEJ1fZQoaAZoCWgPQwi3Jt2WyIXpv5SGlFKUaBVLMmgWR0C6fEmqgh8qdX2UKGgGaAloD0MIq5Se6SUG8L+UhpRSlGgVSzJoFkdAunwqp4rz5HV9lChoBmgJaA9DCI0ngjgPp+6/lIaUUpRoFUsyaBZHQLp8DND+irV1fZQoaAZoCWgPQwiA7zZvnBTxv5SGlFKUaBVLMmgWR0C6e+wTM7lrdX2UKGgGaAloD0MIUInrGFdc6L+UhpRSlGgVSzJoFkdAunzQbp/wzHV9lChoBmgJaA9DCEHTEiujkd6/lIaUUpRoFUsyaBZHQLp8sXf642F1fZQoaAZoCWgPQwg+k/3zNGDqv5SGlFKUaBVLMmgWR0C6fJO6iCardX2UKGgGaAloD0MI14UfnE+d8L+UhpRSlGgVSzJoFkdAunxzDHfdh3V9lChoBmgJaA9DCPdzCvKzEfC/lIaUUpRoFUsyaBZHQLp9ZaqjrRl1fZQoaAZoCWgPQwj5ZwbxgZ3lv5SGlFKUaBVLMmgWR0C6fUad+XqrdX2UKGgGaAloD0MIryZPWU3X2L+UhpRSlGgVSzJoFkdAun0orJ8v3HV9lChoBmgJaA9DCA6g3/dv3vK/lIaUUpRoFUsyaBZHQLp9B9pyp711fZQoaAZoCWgPQwgGaFvNOmPsv5SGlFKUaBVLMmgWR0C6feZgkTpQdX2UKGgGaAloD0MIxQJf0a3X5L+UhpRSlGgVSzJoFkdAun3HO2RaHXV9lChoBmgJaA9DCLiQR3Aj5eq/lIaUUpRoFUsyaBZHQLp9qVIqbz91fZQoaAZoCWgPQwjL94xEaIThv5SGlFKUaBVLMmgWR0C6fYh8+iaidX2UKGgGaAloD0MIiEojZvb54L+UhpRSlGgVSzJoFkdAun5jz9S/CnV9lChoBmgJaA9DCMv49xkXjuu/lIaUUpRoFUsyaBZHQLp+RNliBoV1fZQoaAZoCWgPQwjVXkTbMfXkv5SGlFKUaBVLMmgWR0C6ficKohpydX2UKGgGaAloD0MIud42UyGe5b+UhpRSlGgVSzJoFkdAun4GKXOW0XV9lChoBmgJaA9DCOmbNA2K5uW/lIaUUpRoFUsyaBZHQLp+8ofCAMF1fZQoaAZoCWgPQwiRtvEnKpvzv5SGlFKUaBVLMmgWR0C6ftN5t3wDdX2UKGgGaAloD0MIR8hAnl2+5b+UhpRSlGgVSzJoFkdAun61oJzDGnV9lChoBmgJaA9DCDnQQ20bRu2/lIaUUpRoFUsyaBZHQLp+lPZZjhF1fZQoaAZoCWgPQwh0C12JQPXzv5SGlFKUaBVLMmgWR0C6f39y925hdX2UKGgGaAloD0MIBhGpaReT8r+UhpRSlGgVSzJoFkdAun9gq2Bre3V9lChoBmgJaA9DCPUQje4gduW/lIaUUpRoFUsyaBZHQLp/QwOOKfp1fZQoaAZoCWgPQwgr9pfdk4fiv5SGlFKUaBVLMmgWR0C6fyKePJaJdX2UKGgGaAloD0MIKdAn8iTp9L+UhpRSlGgVSzJoFkdAuoADMNc4YXV9lChoBmgJaA9DCKcGms+5m/C/lIaUUpRoFUsyaBZHQLp/5DgZTAF1fZQoaAZoCWgPQwhMpDSbx2Hvv5SGlFKUaBVLMmgWR0C6f8ZiuuA7dX2UKGgGaAloD0MIiGTIsfWM9b+UhpRSlGgVSzJoFkdAun+lpwjt5XV9lChoBmgJaA9DCAqEnWLV4PC/lIaUUpRoFUsyaBZHQLqAjLrX18N1fZQoaAZoCWgPQwhpGan3VI70v5SGlFKUaBVLMmgWR0C6gG26ClJpdX2UKGgGaAloD0MIflaZKa2/8b+UhpRSlGgVSzJoFkdAuoBP7l7tzHV9lChoBmgJaA9DCKSOjquR3em/lIaUUpRoFUsyaBZHQLqALy08eS11fZQoaAZoCWgPQwhqhlRRvArzv5SGlFKUaBVLMmgWR0C6gQzXFtKqdX2UKGgGaAloD0MIkgThCijU8r+UhpRSlGgVSzJoFkdAuoDtvfj0c3V9lChoBmgJaA9DCGYv205bY/y/lIaUUpRoFUsyaBZHQLqAz8+A3DN1fZQoaAZoCWgPQwhqhlRRvIr+v5SGlFKUaBVLMmgWR0C6gK7dWQwLdX2UKGgGaAloD0MIttjts8oM9L+UhpRSlGgVSzJoFkdAuoGG2UjcEnV9lChoBmgJaA9DCLmmQGZnkfe/lIaUUpRoFUsyaBZHQLqBaDyOJch1fZQoaAZoCWgPQwiUhETaxl/wv5SGlFKUaBVLMmgWR0C6gUqbWmP6dX2UKGgGaAloD0MIYcYUrHG28b+UhpRSlGgVSzJoFkdAuoEpzhgmZ3V9lChoBmgJaA9DCB3k9WBSfPC/lIaUUpRoFUsyaBZHQLqCEDTjNpx1fZQoaAZoCWgPQwg/qmG/J1b6v5SGlFKUaBVLMmgWR0C6gfEtdzGQdX2UKGgGaAloD0MIOQmlL4Sc87+UhpRSlGgVSzJoFkdAuoHTPOY6XHV9lChoBmgJaA9DCJ86Vik9U+q/lIaUUpRoFUsyaBZHQLqBsnH/9511ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 78125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.3678752189967782, "std_reward": 0.35827668981725086, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T09:08:44.479843"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6727b66a854f3438c888e197839ee679853d595cf64c2d22ef29e5f34b748e0c
|
3 |
size 3212
|