Keras
legal
File size: 17,500 Bytes
5d58b52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import average_precision_score
from tqdm import tqdm
import pdb
from torch.utils.data import DataLoader
from collections import defaultdict
import os.path as osp
import json


class KE_model(nn.Module):
    def __init__(self, args):
        super().__init__()
        """
        triple task: mask tail entity, total entity size-class classification 
        """
        """
        :param hidden: BERT model output size
        """
        self.args = args
        self.ke_dim = args.ke_dim

        self.linear_ent = nn.Linear(args.hidden_size, self.ke_dim)
        self.linear_rel = nn.Linear(args.hidden_size, self.ke_dim)

        self.ke_margin = nn.Parameter(
            torch.Tensor([args.ke_margin]),
            requires_grad=False
        )

    def forward(self, batch, hw_model):
        batch_triple = batch
        pos_sample = batch_triple["positive_sample"]
        neg_sample = batch_triple["negative_sample"]
        neg_index = batch_triple["neg_index"]
        
        # 节省显存
        all_entity = []
        all_entity_mask = []
        for i in range(3):
            all_entity.append(pos_sample[i]['input_ids'])
            all_entity_mask.append(pos_sample[i]['attention_mask'])
        
        all_entity = torch.cat(all_entity)
        all_entity_mask = torch.cat(all_entity_mask)
        entity_data = {'input_ids':all_entity, 'attention_mask':all_entity_mask}
        entity_emb = hw_model.cls_embedding(entity_data, tp=self.args.plm_emb_type)

        bs = pos_sample[0]['input_ids'].shape[0]
        pos_sample_emb= [entity_emb[:bs], entity_emb[bs:2*bs], entity_emb[2*bs:3*bs]]
        neg_sample_emb = entity_emb[neg_index]
        mode = batch_triple["mode"]
        # pos_score = self.get_score(pos_sample, hw_model)
        # neg_score = self.get_score(pos_sample, hw_model, neg_sample, mode)
        pos_score = self.get_score(pos_sample_emb, hw_model)
        neg_score = self.get_score(pos_sample_emb, hw_model, neg_sample_emb, mode)
        triple_loss = self.adv_loss(pos_score, neg_score, self.args)

        return triple_loss

        # pdb.set_trace()
        # return emb.div_(emb.detach().norm(p=1, dim=-1, keepdim=True))

# KE loss
    def tri2emb(self, triples, hw_model, negs=None, mode="single"):
        """Get embedding of triples.
        This function get the embeddings of head, relation, and tail
        respectively. each embedding has three dimensions.
        Args:
            triples (tensor): This tensor save triples id, which dimension is 
                [triples number, 3].
            negs (tensor, optional): This tenosr store the id of the entity to 
                be replaced, which has one dimension. when negs is None, it is 
                in the test/eval phase. Defaults to None.
            mode (str, optional): This arg indicates that the negative entity 
                will replace the head or tail entity. when it is 'single', it 
                means that entity will not be replaced. Defaults to 'single'.
        Returns:
            head_emb: Head entity embedding.
            relation_emb: Relation embedding.
            tail_emb: Tail entity embedding.
        """

        if mode == "single":
            head_emb = self.get_embedding(triples[0]).unsqueeze(1)  # [bs, 1, dim]
            relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1)  # [bs, 1, dim]
            tail_emb = self.get_embedding(triples[2]).unsqueeze(1)  # [bs, 1, dim]

        elif mode == "head-batch" or mode == "head_predict":
            if negs is None:  # 说明这个时候是在evluation,所以需要直接用所有的entity embedding
                # TODO:暂时不考虑KGC的测试情况
                head_emb = self.ent_emb.weight.data.unsqueeze(0)  # [1, num_ent, dim]
            else:
                head_emb = self.get_embedding(negs).reshape(-1, self.args.neg_num, self.args.ke_dim)  # [bs, num_neg, dim]
            relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1)  # [bs, 1, dim]
            tail_emb = self.get_embedding(triples[2]).unsqueeze(1)  # [bs, 1, dim]

        elif mode == "tail-batch" or mode == "tail_predict":
            head_emb = self.get_embedding(triples[0]).unsqueeze(1)  # [bs, 1, dim]
            relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1)  # [bs, 1, dim]
            if negs is None:
                tail_emb = self.ent_emb.weight.data.unsqueeze(0)  # [1, num_ent, dim]
            else:
                # pdb.set_trace()
                tail_emb = self.get_embedding(negs).reshape(-1, self.args.neg_num, self.args.ke_dim)  # [bs, num_neg, dim]

        return head_emb, relation_emb, tail_emb

    def get_embedding(self, inputs, is_ent=True):
        # pdb.set_trace()
        if is_ent:
            return self.linear_ent(inputs)
        else:
            return self.linear_rel(inputs)

    def score_func(self, head_emb, relation_emb, tail_emb):
        """Calculating the score of triples.

        The formula for calculating the score is :math:`\gamma - ||h + r - t||_F`
        Args:
            head_emb: The head entity embedding.
            relation_emb: The relation embedding.
            tail_emb: The tail entity embedding.
            mode: Choose head-predict or tail-predict.
        Returns:
            score: The score of triples.
        """
        score = (head_emb + relation_emb) - tail_emb
        # pdb.set_trace()
        score = self.ke_margin.item() - torch.norm(score, p=1, dim=-1)
        return score

    def get_score(self, triples, hw_model, negs=None, mode='single'):
        """The functions used in the training phase

        Args:
            triples: The triples ids, as (h, r, t), shape:[batch_size, 3].
            negs: Negative samples, defaults to None.
            mode: Choose head-predict or tail-predict, Defaults to 'single'.

        Returns:
            score: The score of triples.
        """
        head_emb, relation_emb, tail_emb = self.tri2emb(triples, hw_model, negs, mode)
        score = self.score_func(head_emb, relation_emb, tail_emb)

        return score

    def adv_loss(self, pos_score, neg_score, args):
        """Negative sampling loss with self-adversarial training. In math:

        L=-\log \sigma\left(\gamma-d_{r}(\mathbf{h}, \mathbf{t})\right)-\sum_{i=1}^{n} p\left(h_{i}^{\prime}, r, t_{i}^{\prime}\right) \log \sigma\left(d_{r}\left(\mathbf{h}_{i}^{\prime}, \mathbf{t}_{i}^{\prime}\right)-\gamma\right)

        Args:
            pos_score: The score of positive samples.
            neg_score: The score of negative samples.
            subsampling_weight: The weight for correcting pos_score and neg_score.

        Returns:
            loss: The training loss for back propagation.
        """
        neg_score = (F.softmax(neg_score * args.adv_temp, dim=1).detach()
                     * F.logsigmoid(-neg_score)).sum(dim=1)  # shape:[bs]
        pos_score = F.logsigmoid(pos_score).view(neg_score.shape[0])  # shape:[bs]
        positive_sample_loss = - pos_score.mean()
        negative_sample_loss = - neg_score.mean()
        loss = (positive_sample_loss + negative_sample_loss) / 2
        return loss


class KGEModel(nn.Module):
    def __init__(self, nentity, nrelation, hidden_dim, gamma, entity_embedding, relation_embedding):
        super(KGEModel, self).__init__()
        self.nentity = nentity
        self.nrelation = nrelation
        self.hidden_dim = hidden_dim

        self.gamma = nn.Parameter(
            torch.Tensor([gamma]),
            requires_grad=False
        )
        self.entity_embedding = entity_embedding
        self.relation_embedding = relation_embedding

        assert self.relation_embedding.shape[0] == nrelation
        assert self.entity_embedding.shape[0] == nentity

    def forward(self, sample, mode='single'):
        '''
        Forward function that calculate the score of a batch of triples.
        In the 'single' mode, sample is a batch of triple.
        In the 'head-batch' or 'tail-batch' mode, sample consists two part.
        The first part is usually the positive sample.
        And the second part is the entities in the negative samples.
        Because negative samples and positive samples usually share two elements 
        in their triple ((head, relation) or (relation, tail)).
        '''

        if mode == 'single':
            batch_size, negative_sample_size = sample.size(0), 1

            head = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=sample[:, 0]
            ).unsqueeze(1)

            relation = torch.index_select(
                self.relation_embedding,
                dim=0,
                index=sample[:, 1]
            ).unsqueeze(1)

            tail = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=sample[:, 2]
            ).unsqueeze(1)

        elif mode == 'head-batch':
            tail_part, head_part = sample
            batch_size, negative_sample_size = head_part.size(0), head_part.size(1)

            head = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=head_part.view(-1)
            ).view(batch_size, negative_sample_size, -1)

            relation = torch.index_select(
                self.relation_embedding,
                dim=0,
                index=tail_part[:, 1]
            ).unsqueeze(1)

            tail = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=tail_part[:, 2]
            ).unsqueeze(1)

        elif mode == 'tail-batch':
            head_part, tail_part = sample
            batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)

            head = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=head_part[:, 0]
            ).unsqueeze(1)

            relation = torch.index_select(
                self.relation_embedding,
                dim=0,
                index=head_part[:, 1]
            ).unsqueeze(1)

            tail = torch.index_select(
                self.entity_embedding,
                dim=0,
                index=tail_part.view(-1)
            ).view(batch_size, negative_sample_size, -1)

        else:
            raise ValueError('mode %s not supported' % mode)

        score = self.TransE(head, relation, tail, mode)

        return score

    def TransE(self, head, relation, tail, mode):
        if mode == 'head-batch':
            score = head + (relation - tail)
        else:
            score = (head + relation) - tail

        score = self.gamma.item() - torch.norm(score, p=1, dim=-1)
        return score

    @torch.no_grad()
    def test_step(self, test_triples, all_true_triples, args, nentity, nrelation):
        '''
        Evaluate the model on test or valid datasets
        '''
        # Otherwise use standard (filtered) MRR, MR, HITS@1, HITS@3, and HITS@10 metrics
        # Prepare dataloader for evaluation
        test_dataloader_head = DataLoader(
            KGTestDataset(
                test_triples,
                all_true_triples,
                nentity,
                nrelation,
                'head-batch'
            ),
            batch_size=args.batch_size,
            num_workers=args.workers,
            persistent_workers=True,
            collate_fn=KGTestDataset.collate_fn
        )

        test_dataloader_tail = DataLoader(
            KGTestDataset(
                test_triples,
                all_true_triples,
                nentity,
                nrelation,
                'tail-batch'
            ),
            batch_size=args.batch_size,
            num_workers=args.workers,
            persistent_workers=True,
            collate_fn=KGTestDataset.collate_fn
        )

        test_dataset_list = [test_dataloader_head, test_dataloader_tail]

        logs = []

        step = 0
        total_steps = sum([len(dataset) for dataset in test_dataset_list])

        # pdb.set_trace()
        with tqdm(total=total_steps) as _tqdm:
            _tqdm.set_description(f'eval KGC')
            for test_dataset in test_dataset_list:
                for positive_sample, negative_sample, filter_bias, mode in test_dataset:

                    positive_sample = positive_sample.cuda()
                    negative_sample = negative_sample.cuda()
                    filter_bias = filter_bias.cuda()

                    batch_size = positive_sample.size(0)

                    score = self.forward((positive_sample, negative_sample), mode)
                    score += filter_bias

                    # Explicitly sort all the entities to ensure that there is no test exposure bias
                    argsort = torch.argsort(score, dim=1, descending=True)

                    if mode == 'head-batch':
                        positive_arg = positive_sample[:, 0]
                    elif mode == 'tail-batch':
                        positive_arg = positive_sample[:, 2]
                    else:
                        raise ValueError('mode %s not supported' % mode)

                    for i in range(batch_size):
                        # Notice that argsort is not ranking
                        # ranking = (argsort[i, :] == positive_arg[i]).nonzero()
                        ranking = (argsort[i, :] == positive_arg[i]).nonzero(as_tuple=False)
                        assert ranking.size(0) == 1

                        # ranking + 1 is the true ranking used in evaluation metrics
                        ranking = 1 + ranking.item()
                        logs.append({
                            'MRR': 1.0 / ranking,
                            'MR': float(ranking),
                            'HITS@1': 1.0 if ranking <= 1 else 0.0,
                            'HITS@3': 1.0 if ranking <= 3 else 0.0,
                            'HITS@10': 1.0 if ranking <= 10 else 0.0,
                        })

                    # if step % args.test_log_steps == 0:
                    #     logging.info('Evaluating the model... (%d/%d)' % (step, total_steps))
                    _tqdm.update(1)
                    _tqdm.set_description(f'KGC Eval:')
                    step += 1

        metrics = {}
        for metric in logs[0].keys():
            metrics[metric] = sum([log[metric] for log in logs]) / len(logs)

        return metrics


# 专门为KGE的测试设计一个dataset
class KGTestDataset(torch.utils.data.Dataset):
    def __init__(self, triples, all_true_triples, nentity, nrelation, mode, head4rel_tail=None, tail4head_rel=None):
        self.len = len(triples)
        self.triple_set = set(all_true_triples)
        self.triples = triples

        # 需要统计得到
        self.nentity = nentity
        self.nrelation = nrelation
        self.mode = mode

        # 给定关系尾实体对应头实体
        # print("build head4rel_tail")
        # self.head4rel_tail = self.find_head4rel_tail()
        # print("build tail4head_rel")
        # self.tail4head_rel = self.find_tail4head_rel()

    def __len__(self):
        return self.len

    def find_head4rel_tail(self):
        ans = defaultdict(list)
        for (h, r, t) in self.triple_set:
            ans[(r, t)].append(h)
        return ans

    def find_tail4head_rel(self):
        ans = defaultdict(list)
        for (h, r, t) in self.triple_set:
            ans[(h, r)].append(t)
        return ans

    def __getitem__(self, idx):
        head, relation, tail = self.triples[idx]

        if self.mode == 'head-batch':
            tmp = [(0, rand_head) if (rand_head, relation, tail) not in self.triple_set
                   else (-100, head) for rand_head in range(self.nentity)]
            tmp[head] = (0, head)
        elif self.mode == 'tail-batch':
            tmp = [(0, rand_tail) if (head, relation, rand_tail) not in self.triple_set
                   else (-100, tail) for rand_tail in range(self.nentity)]
            tmp[tail] = (0, tail)
        else:
            raise ValueError('negative batch mode %s not supported' % self.mode)
        # if self.mode == 'head-batch':
            #
        #     tmp = [(0, rand_head) if rand_head not in  self.head4rel_tail[(relation, tail)]
        #            else (-100, head) for rand_head in range(self.nentity)]
        #     tmp[head] = (0, head)
        # elif self.mode == 'tail-batch':
        #     tmp = [(0, rand_tail) if rand_tail not in self.tail4head_rel[(head, relation)]
        #            else (-100, tail) for rand_tail in range(self.nentity)]
        #     tmp[tail] = (0, tail)
        # else:
        #     raise ValueError('negative batch mode %s not supported' % self.mode)

        tmp = torch.LongTensor(tmp)
        filter_bias = tmp[:, 0].float()
        negative_sample = tmp[:, 1]

        positive_sample = torch.LongTensor((head, relation, tail))

        return positive_sample, negative_sample, filter_bias, self.mode

    @staticmethod
    def collate_fn(data):
        positive_sample = torch.stack([_[0] for _ in data], dim=0)
        negative_sample = torch.stack([_[1] for _ in data], dim=0)
        filter_bias = torch.stack([_[2] for _ in data], dim=0)
        mode = data[0][3]
        return positive_sample, negative_sample, filter_bias, mode