File size: 17,500 Bytes
5d58b52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
from sklearn.metrics import average_precision_score
from tqdm import tqdm
import pdb
from torch.utils.data import DataLoader
from collections import defaultdict
import os.path as osp
import json
class KE_model(nn.Module):
def __init__(self, args):
super().__init__()
"""
triple task: mask tail entity, total entity size-class classification
"""
"""
:param hidden: BERT model output size
"""
self.args = args
self.ke_dim = args.ke_dim
self.linear_ent = nn.Linear(args.hidden_size, self.ke_dim)
self.linear_rel = nn.Linear(args.hidden_size, self.ke_dim)
self.ke_margin = nn.Parameter(
torch.Tensor([args.ke_margin]),
requires_grad=False
)
def forward(self, batch, hw_model):
batch_triple = batch
pos_sample = batch_triple["positive_sample"]
neg_sample = batch_triple["negative_sample"]
neg_index = batch_triple["neg_index"]
# 节省显存
all_entity = []
all_entity_mask = []
for i in range(3):
all_entity.append(pos_sample[i]['input_ids'])
all_entity_mask.append(pos_sample[i]['attention_mask'])
all_entity = torch.cat(all_entity)
all_entity_mask = torch.cat(all_entity_mask)
entity_data = {'input_ids':all_entity, 'attention_mask':all_entity_mask}
entity_emb = hw_model.cls_embedding(entity_data, tp=self.args.plm_emb_type)
bs = pos_sample[0]['input_ids'].shape[0]
pos_sample_emb= [entity_emb[:bs], entity_emb[bs:2*bs], entity_emb[2*bs:3*bs]]
neg_sample_emb = entity_emb[neg_index]
mode = batch_triple["mode"]
# pos_score = self.get_score(pos_sample, hw_model)
# neg_score = self.get_score(pos_sample, hw_model, neg_sample, mode)
pos_score = self.get_score(pos_sample_emb, hw_model)
neg_score = self.get_score(pos_sample_emb, hw_model, neg_sample_emb, mode)
triple_loss = self.adv_loss(pos_score, neg_score, self.args)
return triple_loss
# pdb.set_trace()
# return emb.div_(emb.detach().norm(p=1, dim=-1, keepdim=True))
# KE loss
def tri2emb(self, triples, hw_model, negs=None, mode="single"):
"""Get embedding of triples.
This function get the embeddings of head, relation, and tail
respectively. each embedding has three dimensions.
Args:
triples (tensor): This tensor save triples id, which dimension is
[triples number, 3].
negs (tensor, optional): This tenosr store the id of the entity to
be replaced, which has one dimension. when negs is None, it is
in the test/eval phase. Defaults to None.
mode (str, optional): This arg indicates that the negative entity
will replace the head or tail entity. when it is 'single', it
means that entity will not be replaced. Defaults to 'single'.
Returns:
head_emb: Head entity embedding.
relation_emb: Relation embedding.
tail_emb: Tail entity embedding.
"""
if mode == "single":
head_emb = self.get_embedding(triples[0]).unsqueeze(1) # [bs, 1, dim]
relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1) # [bs, 1, dim]
tail_emb = self.get_embedding(triples[2]).unsqueeze(1) # [bs, 1, dim]
elif mode == "head-batch" or mode == "head_predict":
if negs is None: # 说明这个时候是在evluation,所以需要直接用所有的entity embedding
# TODO:暂时不考虑KGC的测试情况
head_emb = self.ent_emb.weight.data.unsqueeze(0) # [1, num_ent, dim]
else:
head_emb = self.get_embedding(negs).reshape(-1, self.args.neg_num, self.args.ke_dim) # [bs, num_neg, dim]
relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1) # [bs, 1, dim]
tail_emb = self.get_embedding(triples[2]).unsqueeze(1) # [bs, 1, dim]
elif mode == "tail-batch" or mode == "tail_predict":
head_emb = self.get_embedding(triples[0]).unsqueeze(1) # [bs, 1, dim]
relation_emb = self.get_embedding(triples[1], is_ent=False).unsqueeze(1) # [bs, 1, dim]
if negs is None:
tail_emb = self.ent_emb.weight.data.unsqueeze(0) # [1, num_ent, dim]
else:
# pdb.set_trace()
tail_emb = self.get_embedding(negs).reshape(-1, self.args.neg_num, self.args.ke_dim) # [bs, num_neg, dim]
return head_emb, relation_emb, tail_emb
def get_embedding(self, inputs, is_ent=True):
# pdb.set_trace()
if is_ent:
return self.linear_ent(inputs)
else:
return self.linear_rel(inputs)
def score_func(self, head_emb, relation_emb, tail_emb):
"""Calculating the score of triples.
The formula for calculating the score is :math:`\gamma - ||h + r - t||_F`
Args:
head_emb: The head entity embedding.
relation_emb: The relation embedding.
tail_emb: The tail entity embedding.
mode: Choose head-predict or tail-predict.
Returns:
score: The score of triples.
"""
score = (head_emb + relation_emb) - tail_emb
# pdb.set_trace()
score = self.ke_margin.item() - torch.norm(score, p=1, dim=-1)
return score
def get_score(self, triples, hw_model, negs=None, mode='single'):
"""The functions used in the training phase
Args:
triples: The triples ids, as (h, r, t), shape:[batch_size, 3].
negs: Negative samples, defaults to None.
mode: Choose head-predict or tail-predict, Defaults to 'single'.
Returns:
score: The score of triples.
"""
head_emb, relation_emb, tail_emb = self.tri2emb(triples, hw_model, negs, mode)
score = self.score_func(head_emb, relation_emb, tail_emb)
return score
def adv_loss(self, pos_score, neg_score, args):
"""Negative sampling loss with self-adversarial training. In math:
L=-\log \sigma\left(\gamma-d_{r}(\mathbf{h}, \mathbf{t})\right)-\sum_{i=1}^{n} p\left(h_{i}^{\prime}, r, t_{i}^{\prime}\right) \log \sigma\left(d_{r}\left(\mathbf{h}_{i}^{\prime}, \mathbf{t}_{i}^{\prime}\right)-\gamma\right)
Args:
pos_score: The score of positive samples.
neg_score: The score of negative samples.
subsampling_weight: The weight for correcting pos_score and neg_score.
Returns:
loss: The training loss for back propagation.
"""
neg_score = (F.softmax(neg_score * args.adv_temp, dim=1).detach()
* F.logsigmoid(-neg_score)).sum(dim=1) # shape:[bs]
pos_score = F.logsigmoid(pos_score).view(neg_score.shape[0]) # shape:[bs]
positive_sample_loss = - pos_score.mean()
negative_sample_loss = - neg_score.mean()
loss = (positive_sample_loss + negative_sample_loss) / 2
return loss
class KGEModel(nn.Module):
def __init__(self, nentity, nrelation, hidden_dim, gamma, entity_embedding, relation_embedding):
super(KGEModel, self).__init__()
self.nentity = nentity
self.nrelation = nrelation
self.hidden_dim = hidden_dim
self.gamma = nn.Parameter(
torch.Tensor([gamma]),
requires_grad=False
)
self.entity_embedding = entity_embedding
self.relation_embedding = relation_embedding
assert self.relation_embedding.shape[0] == nrelation
assert self.entity_embedding.shape[0] == nentity
def forward(self, sample, mode='single'):
'''
Forward function that calculate the score of a batch of triples.
In the 'single' mode, sample is a batch of triple.
In the 'head-batch' or 'tail-batch' mode, sample consists two part.
The first part is usually the positive sample.
And the second part is the entities in the negative samples.
Because negative samples and positive samples usually share two elements
in their triple ((head, relation) or (relation, tail)).
'''
if mode == 'single':
batch_size, negative_sample_size = sample.size(0), 1
head = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:, 0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=sample[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=sample[:, 2]
).unsqueeze(1)
elif mode == 'head-batch':
tail_part, head_part = sample
batch_size, negative_sample_size = head_part.size(0), head_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part.view(-1)
).view(batch_size, negative_sample_size, -1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=tail_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part[:, 2]
).unsqueeze(1)
elif mode == 'tail-batch':
head_part, tail_part = sample
batch_size, negative_sample_size = tail_part.size(0), tail_part.size(1)
head = torch.index_select(
self.entity_embedding,
dim=0,
index=head_part[:, 0]
).unsqueeze(1)
relation = torch.index_select(
self.relation_embedding,
dim=0,
index=head_part[:, 1]
).unsqueeze(1)
tail = torch.index_select(
self.entity_embedding,
dim=0,
index=tail_part.view(-1)
).view(batch_size, negative_sample_size, -1)
else:
raise ValueError('mode %s not supported' % mode)
score = self.TransE(head, relation, tail, mode)
return score
def TransE(self, head, relation, tail, mode):
if mode == 'head-batch':
score = head + (relation - tail)
else:
score = (head + relation) - tail
score = self.gamma.item() - torch.norm(score, p=1, dim=-1)
return score
@torch.no_grad()
def test_step(self, test_triples, all_true_triples, args, nentity, nrelation):
'''
Evaluate the model on test or valid datasets
'''
# Otherwise use standard (filtered) MRR, MR, HITS@1, HITS@3, and HITS@10 metrics
# Prepare dataloader for evaluation
test_dataloader_head = DataLoader(
KGTestDataset(
test_triples,
all_true_triples,
nentity,
nrelation,
'head-batch'
),
batch_size=args.batch_size,
num_workers=args.workers,
persistent_workers=True,
collate_fn=KGTestDataset.collate_fn
)
test_dataloader_tail = DataLoader(
KGTestDataset(
test_triples,
all_true_triples,
nentity,
nrelation,
'tail-batch'
),
batch_size=args.batch_size,
num_workers=args.workers,
persistent_workers=True,
collate_fn=KGTestDataset.collate_fn
)
test_dataset_list = [test_dataloader_head, test_dataloader_tail]
logs = []
step = 0
total_steps = sum([len(dataset) for dataset in test_dataset_list])
# pdb.set_trace()
with tqdm(total=total_steps) as _tqdm:
_tqdm.set_description(f'eval KGC')
for test_dataset in test_dataset_list:
for positive_sample, negative_sample, filter_bias, mode in test_dataset:
positive_sample = positive_sample.cuda()
negative_sample = negative_sample.cuda()
filter_bias = filter_bias.cuda()
batch_size = positive_sample.size(0)
score = self.forward((positive_sample, negative_sample), mode)
score += filter_bias
# Explicitly sort all the entities to ensure that there is no test exposure bias
argsort = torch.argsort(score, dim=1, descending=True)
if mode == 'head-batch':
positive_arg = positive_sample[:, 0]
elif mode == 'tail-batch':
positive_arg = positive_sample[:, 2]
else:
raise ValueError('mode %s not supported' % mode)
for i in range(batch_size):
# Notice that argsort is not ranking
# ranking = (argsort[i, :] == positive_arg[i]).nonzero()
ranking = (argsort[i, :] == positive_arg[i]).nonzero(as_tuple=False)
assert ranking.size(0) == 1
# ranking + 1 is the true ranking used in evaluation metrics
ranking = 1 + ranking.item()
logs.append({
'MRR': 1.0 / ranking,
'MR': float(ranking),
'HITS@1': 1.0 if ranking <= 1 else 0.0,
'HITS@3': 1.0 if ranking <= 3 else 0.0,
'HITS@10': 1.0 if ranking <= 10 else 0.0,
})
# if step % args.test_log_steps == 0:
# logging.info('Evaluating the model... (%d/%d)' % (step, total_steps))
_tqdm.update(1)
_tqdm.set_description(f'KGC Eval:')
step += 1
metrics = {}
for metric in logs[0].keys():
metrics[metric] = sum([log[metric] for log in logs]) / len(logs)
return metrics
# 专门为KGE的测试设计一个dataset
class KGTestDataset(torch.utils.data.Dataset):
def __init__(self, triples, all_true_triples, nentity, nrelation, mode, head4rel_tail=None, tail4head_rel=None):
self.len = len(triples)
self.triple_set = set(all_true_triples)
self.triples = triples
# 需要统计得到
self.nentity = nentity
self.nrelation = nrelation
self.mode = mode
# 给定关系尾实体对应头实体
# print("build head4rel_tail")
# self.head4rel_tail = self.find_head4rel_tail()
# print("build tail4head_rel")
# self.tail4head_rel = self.find_tail4head_rel()
def __len__(self):
return self.len
def find_head4rel_tail(self):
ans = defaultdict(list)
for (h, r, t) in self.triple_set:
ans[(r, t)].append(h)
return ans
def find_tail4head_rel(self):
ans = defaultdict(list)
for (h, r, t) in self.triple_set:
ans[(h, r)].append(t)
return ans
def __getitem__(self, idx):
head, relation, tail = self.triples[idx]
if self.mode == 'head-batch':
tmp = [(0, rand_head) if (rand_head, relation, tail) not in self.triple_set
else (-100, head) for rand_head in range(self.nentity)]
tmp[head] = (0, head)
elif self.mode == 'tail-batch':
tmp = [(0, rand_tail) if (head, relation, rand_tail) not in self.triple_set
else (-100, tail) for rand_tail in range(self.nentity)]
tmp[tail] = (0, tail)
else:
raise ValueError('negative batch mode %s not supported' % self.mode)
# if self.mode == 'head-batch':
#
# tmp = [(0, rand_head) if rand_head not in self.head4rel_tail[(relation, tail)]
# else (-100, head) for rand_head in range(self.nentity)]
# tmp[head] = (0, head)
# elif self.mode == 'tail-batch':
# tmp = [(0, rand_tail) if rand_tail not in self.tail4head_rel[(head, relation)]
# else (-100, tail) for rand_tail in range(self.nentity)]
# tmp[tail] = (0, tail)
# else:
# raise ValueError('negative batch mode %s not supported' % self.mode)
tmp = torch.LongTensor(tmp)
filter_bias = tmp[:, 0].float()
negative_sample = tmp[:, 1]
positive_sample = torch.LongTensor((head, relation, tail))
return positive_sample, negative_sample, filter_bias, self.mode
@staticmethod
def collate_fn(data):
positive_sample = torch.stack([_[0] for _ in data], dim=0)
negative_sample = torch.stack([_[1] for _ in data], dim=0)
filter_bias = torch.stack([_[2] for _ in data], dim=0)
mode = data[0][3]
return positive_sample, negative_sample, filter_bias, mode
|