Keras
legal
flowise / KTeleBERT /model /OD_model.py
kevin110211's picture
Upload 51 files
5d58b52
raw
history blame
2.66 kB
import os
import os.path as osp
import pdb
import torch
import torch.nn as nn
import numpy as np
# from transformers import BertModel, BertTokenizer, BertForMaskedLM
import json
from packaging import version
import torch.distributed as dist
class OD_model(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.order_num = args.order_num
if args.od_type == 'linear_cat':
# self.order_dense_1 = nn.Linear(args.hidden_size * self.order_num, args.hidden_size)
# self.order_dense_2 = nn.Linear(args.hidden_size, 1)
self.order_dense_1 = nn.Linear(args.hidden_size * self.order_num, args.hidden_size)
if self.args.num_od_layer > 0:
self.layer = nn.ModuleList([OD_Layer_linear(args) for _ in range(args.num_od_layer)])
self.order_dense_2 = nn.Linear(args.hidden_size, 1)
self.actication = nn.LeakyReLU()
self.bn = torch.nn.BatchNorm1d(args.hidden_size)
self.dp = nn.Dropout(p=args.hidden_dropout_prob)
self.loss_func = nn.BCEWithLogitsLoss()
# self.loss_func = nn.CrossEntropyLoss()
def forward(self, input, labels):
# input 切成两半
# 换方向拼接
loss_dic = {}
pre = self.predict(input)
# pdb.set_trace()
loss = self.loss_func(pre, labels.unsqueeze(1))
loss_dic['order_loss'] = loss.item()
return loss, loss_dic
def encode(self, input):
if self.args.num_od_layer > 0:
for layer_module in self.layer:
input = layer_module(input)
inputs = torch.chunk(input, 2, dim=0)
emb = torch.concat(inputs, dim=1)
return self.actication(self.order_dense_1(self.dp(emb)))
def predict(self, input):
return self.order_dense_2(self.bn(self.encode(input)))
def right_caculate(self, input, labels, threshold=0.5):
input = input.squeeze(1).tolist()
labels = labels.tolist()
right = 0
for i in range(len(input)):
if (input[i] >= threshold and labels[i] >= 0.5) or (input[i] < threshold and labels[i] < 0.5):
right += 1
return right
class OD_Layer_linear(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
self.dense = nn.Linear(args.hidden_size, args.hidden_size)
self.actication = nn.LeakyReLU()
self.bn = torch.nn.BatchNorm1d(args.hidden_size)
self.dropout = nn.Dropout(p=args.hidden_dropout_prob)
def forward(self, input):
return self.actication(self.bn(self.dense(self.dropout(input))))