|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING |
|
|
|
from transformers.utils import ( |
|
OptionalDependencyNotAvailable, |
|
_LazyModule, |
|
is_flax_available, |
|
is_tensorflow_text_available, |
|
is_tf_available, |
|
is_tokenizers_available, |
|
is_torch_available, |
|
) |
|
|
|
|
|
_import_structure = { |
|
"configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], |
|
"tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], |
|
} |
|
|
|
try: |
|
if not is_tokenizers_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
_import_structure["tokenization_bert_fast"] = ["BertTokenizerFast"] |
|
|
|
try: |
|
if not is_torch_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
_import_structure["modeling_bert"] = [ |
|
"BERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
|
"BertForMaskedLM", |
|
"BertForMultipleChoice", |
|
"BertForNextSentencePrediction", |
|
"BertForPreTraining", |
|
"BertForQuestionAnswering", |
|
"BertForSequenceClassification", |
|
"BertForTokenClassification", |
|
"BertLayer", |
|
"BertLMHeadModel", |
|
"BertModel", |
|
"BertPreTrainedModel", |
|
"load_tf_weights_in_bert", |
|
] |
|
|
|
try: |
|
if not is_tf_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
_import_structure["modeling_tf_bert"] = [ |
|
"TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", |
|
"TFBertEmbeddings", |
|
"TFBertForMaskedLM", |
|
"TFBertForMultipleChoice", |
|
"TFBertForNextSentencePrediction", |
|
"TFBertForPreTraining", |
|
"TFBertForQuestionAnswering", |
|
"TFBertForSequenceClassification", |
|
"TFBertForTokenClassification", |
|
"TFBertLMHeadModel", |
|
"TFBertMainLayer", |
|
"TFBertModel", |
|
"TFBertPreTrainedModel", |
|
] |
|
try: |
|
if not is_tensorflow_text_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
_import_structure["tokenization_bert_tf"] = ["TFBertTokenizer"] |
|
|
|
try: |
|
if not is_flax_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
_import_structure["modeling_flax_bert"] = [ |
|
"FlaxBertForCausalLM", |
|
"FlaxBertForMaskedLM", |
|
"FlaxBertForMultipleChoice", |
|
"FlaxBertForNextSentencePrediction", |
|
"FlaxBertForPreTraining", |
|
"FlaxBertForQuestionAnswering", |
|
"FlaxBertForSequenceClassification", |
|
"FlaxBertForTokenClassification", |
|
"FlaxBertModel", |
|
"FlaxBertPreTrainedModel", |
|
] |
|
|
|
if TYPE_CHECKING: |
|
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig |
|
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer |
|
|
|
try: |
|
if not is_tokenizers_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
from .tokenization_bert_fast import BertTokenizerFast |
|
|
|
try: |
|
if not is_torch_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
from .modeling_bert import ( |
|
BERT_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
BertForMaskedLM, |
|
BertForMultipleChoice, |
|
BertForNextSentencePrediction, |
|
BertForPreTraining, |
|
BertForQuestionAnswering, |
|
BertForSequenceClassification, |
|
BertForTokenClassification, |
|
BertLayer, |
|
BertLMHeadModel, |
|
BertModel, |
|
BertPreTrainedModel, |
|
load_tf_weights_in_bert, |
|
) |
|
|
|
try: |
|
if not is_tf_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
from .modeling_tf_bert import ( |
|
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, |
|
TFBertEmbeddings, |
|
TFBertForMaskedLM, |
|
TFBertForMultipleChoice, |
|
TFBertForNextSentencePrediction, |
|
TFBertForPreTraining, |
|
TFBertForQuestionAnswering, |
|
TFBertForSequenceClassification, |
|
TFBertForTokenClassification, |
|
TFBertLMHeadModel, |
|
TFBertMainLayer, |
|
TFBertModel, |
|
TFBertPreTrainedModel, |
|
) |
|
|
|
try: |
|
if not is_tensorflow_text_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
from .tokenization_bert_tf import TFBertTokenizer |
|
|
|
try: |
|
if not is_flax_available(): |
|
raise OptionalDependencyNotAvailable() |
|
except OptionalDependencyNotAvailable: |
|
pass |
|
else: |
|
from .modeling_flax_bert import ( |
|
FlaxBertForCausalLM, |
|
FlaxBertForMaskedLM, |
|
FlaxBertForMultipleChoice, |
|
FlaxBertForNextSentencePrediction, |
|
FlaxBertForPreTraining, |
|
FlaxBertForQuestionAnswering, |
|
FlaxBertForSequenceClassification, |
|
FlaxBertForTokenClassification, |
|
FlaxBertModel, |
|
FlaxBertPreTrainedModel, |
|
) |
|
|
|
else: |
|
import sys |
|
|
|
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) |
|
|