kevinbazira
commited on
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- fr
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- it
|
8 |
+
- pt
|
9 |
+
- ja
|
10 |
+
- ko
|
11 |
+
- zh
|
12 |
+
- ar
|
13 |
+
- el
|
14 |
+
- fa
|
15 |
+
- pl
|
16 |
+
- id
|
17 |
+
- cs
|
18 |
+
- he
|
19 |
+
- hi
|
20 |
+
- nl
|
21 |
+
- ro
|
22 |
+
- ru
|
23 |
+
- tr
|
24 |
+
- uk
|
25 |
+
- vi
|
26 |
+
license: cc-by-nc-4.0
|
27 |
+
library_name: transformers
|
28 |
+
tags:
|
29 |
+
- cohere
|
30 |
+
- pytorch
|
31 |
+
- awq
|
32 |
+
model_name: aya-expanse-8b-awq-4bit
|
33 |
+
base_model: CohereForAI/aya-expanse-8b
|
34 |
+
inference: false
|
35 |
+
model_creator: Cohere For AI
|
36 |
+
pipeline_tag: text-generation
|
37 |
+
quantized_by: kevinbazira
|
38 |
+
---
|
39 |
+
|
40 |
+
# aya-expanse-8b-awq-4bit
|
41 |
+
|
42 |
+
This repository contains a quantized version of the `CohereForAI/aya-expanse-8b` model using the [AWQ](https://huggingface.co/docs/transformers/en/quantization/awq) method in 4-bit precision.
|
43 |
+
|
44 |
+
## Model Summary
|
45 |
+
|
46 |
+
- **Quantized Model**: [kevinbazira/aya-expanse-8b-awq-4bit](https://huggingface.co/kevinbazira/aya-expanse-8b-awq-4bit)
|
47 |
+
- **Quantization Method**: [AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration](https://arxiv.org/pdf/2306.00978)
|
48 |
+
- **AWQ Version**: [GEMM](https://github.com/casper-hansen/AutoAWQ/tree/f1abb8ef8e261db78eb6c603f691801797fbb293?tab=readme-ov-file#int4-gemm-vs-int4-gemv-vs-fp16)
|
49 |
+
- **Precision**: 4-bit
|
50 |
+
- **Original Model**: [CohereForAI/aya-expanse-8b](https://huggingface.co/CohereForAI/aya-expanse-8b)
|
51 |
+
|
52 |
+
## How to Use the Quantized Model
|
53 |
+
|
54 |
+
### 1. Install the necessary packages
|
55 |
+
|
56 |
+
Before using the quantized model, please ensure your environment has:
|
57 |
+
- [AutoAWQ_kernels](https://github.com/casper-hansen/AutoAWQ_kernels)
|
58 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ)
|
59 |
+
|
60 |
+
### 2. Run inference
|
61 |
+
Load and use the quantized model as shown below in Python:
|
62 |
+
|
63 |
+
```python
|
64 |
+
import torch
|
65 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig
|
66 |
+
|
67 |
+
# Set up device
|
68 |
+
device = torch.device('cuda:1') # Remember to use the correct device here
|
69 |
+
|
70 |
+
# Load model and tokenizer
|
71 |
+
model_name = "kevinbazira/aya-expanse-8b-awq-4bit"
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
73 |
+
quantization_config = AwqConfig(version="exllama")
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(
|
75 |
+
model_name,
|
76 |
+
device_map={"": device.index},
|
77 |
+
quantization_config=quantization_config
|
78 |
+
)
|
79 |
+
|
80 |
+
# Prepare input
|
81 |
+
# https://huggingface.co/docs/transformers/en/pad_truncation
|
82 |
+
input_text = "Add your prompt here."
|
83 |
+
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding="max_length", max_length=64)
|
84 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
85 |
+
|
86 |
+
# Perform text generation
|
87 |
+
# https://huggingface.co/docs/transformers/en/main_classes/text_generation
|
88 |
+
outputs = model.generate(
|
89 |
+
**inputs,
|
90 |
+
num_return_sequences=1,
|
91 |
+
min_new_tokens=64,
|
92 |
+
max_new_tokens=64,
|
93 |
+
do_sample=False,
|
94 |
+
use_cache=True,
|
95 |
+
num_beams=1
|
96 |
+
)
|
97 |
+
|
98 |
+
# Decode and print the output
|
99 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
100 |
+
```
|
101 |
+
|
102 |
+
## Benchmark Results
|
103 |
+
|
104 |
+
To evaluate the performance of the quantized model, we run benchmarks using the Hugging Face [Optimum Benchmark](https://github.com/huggingface/optimum-benchmark/tree/7cec62e016d76fe612308e4c2c074fc7f09289fd) tool on an AMD MI200 GPU with ROCm 6.1 and below are the results:
|
105 |
+
|
106 |
+
### Unquantized Model Results:
|
107 |
+
<img src="unquantized-model-results.png" alt="Unquantized Model Results" style="width: 100%; object-fit: cover; display: block;">
|
108 |
+
|
109 |
+
### AWQ Quantized Model Results:
|
110 |
+
<img src="awq-quantized-model-results.png" alt="AWQ Quantized Model Results" style="width: 100%; object-fit: cover; display: block;">
|
111 |
+
|
112 |
+
These results show that the AWQ quantized model offers significant speed advantages during critical inference stages (decode and per-token), outweighing the higher latencies encountered during the load and prefill phases. For deployment scenarios where inference speed is paramount, you can preload the quantized model to eliminate initial latency concerns.
|
113 |
+
|
114 |
+
## More Information
|
115 |
+
|
116 |
+
- **Original Model**: For details about the original model's architecture, training dataset, and performance, please visit the CohereForAI [aya-expanse-8b model card](https://huggingface.co/CohereForAI/aya-expanse-8b).
|
117 |
+
- **Support or inquiries**: If you run into any issues or have questions about the quantized model, feel free to reach me via email:`[email protected]`. I'll be happy to help!
|