File size: 3,143 Bytes
3b9172a 0a3f2f3 3b9172a 0a3f2f3 3b9172a c08e340 3b9172a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
language: bn
tags:
- text generation
- bengali
- gpt2
- bangla
- causal-lm
widget:
- text: "জীবনে সবচেয়ে মূল্যবান জিনিস"
pipeline_tag: text-generation
---
<!--
---
tags:
- generated_from_trainer
datasets:
- null
model_index:
- name: bengali-lyricist-gpt2
results:
- task:
name: Causal Language Modeling
type: text-generation
---
-->
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bengali-lyricist-gpt2
This model is a fine-tuned version of [flax-community/gpt2-bengali](https://huggingface.co/flax-community/gpt2-bengali) on the [Bengali Song Lyrics](https://www.kaggle.com/shakirulhasan/bangla-song-lyrics) dataset from Kaggle.
It achieves the following results on the evaluation set:
- Loss: 2.1199
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 284 | 2.0302 |
| 1.9991 | 2.0 | 568 | 2.0079 |
| 1.9991 | 3.0 | 852 | 1.9956 |
| 1.9135 | 4.0 | 1136 | 1.9885 |
| 1.9135 | 5.0 | 1420 | 1.9840 |
| 1.8561 | 6.0 | 1704 | 1.9831 |
| 1.8561 | 7.0 | 1988 | 1.9828 |
| 1.8094 | 8.0 | 2272 | 1.9827 |
| 1.7663 | 9.0 | 2556 | 1.9868 |
| 1.7663 | 10.0 | 2840 | 1.9902 |
| 1.7279 | 11.0 | 3124 | 1.9961 |
| 1.7279 | 12.0 | 3408 | 2.0023 |
| 1.6887 | 13.0 | 3692 | 2.0092 |
| 1.6887 | 14.0 | 3976 | 2.0162 |
| 1.6546 | 15.0 | 4260 | 2.0225 |
| 1.6217 | 16.0 | 4544 | 2.0315 |
| 1.6217 | 17.0 | 4828 | 2.0410 |
| 1.5953 | 18.0 | 5112 | 2.0474 |
| 1.5953 | 19.0 | 5396 | 2.0587 |
| 1.5648 | 20.0 | 5680 | 2.0679 |
| 1.5648 | 21.0 | 5964 | 2.0745 |
| 1.5413 | 22.0 | 6248 | 2.0836 |
| 1.5238 | 23.0 | 6532 | 2.0890 |
| 1.5238 | 24.0 | 6816 | 2.0969 |
| 1.5043 | 25.0 | 7100 | 2.1035 |
| 1.5043 | 26.0 | 7384 | 2.1091 |
| 1.4936 | 27.0 | 7668 | 2.1135 |
| 1.4936 | 28.0 | 7952 | 2.1172 |
| 1.4822 | 29.0 | 8236 | 2.1186 |
| 1.4783 | 30.0 | 8520 | 2.1199 |
### Framework versions
- Transformers 4.9.0.dev0
- Pytorch 1.9.0+cu102
- Datasets 1.9.1.dev0
- Tokenizers 0.10.3
|